Loading [MathJax]/jax/output/SVG/config.js
Matematicheskaya Biologiya i Bioinformatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Biolog. Bioinform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Biologiya i Bioinformatika, 2016, Volume 11, Issue 1, Pages 127–140
DOI: https://doi.org/10.17537/2016.11.127
(Mi mbb255)
 

This article is cited in 14 scientific papers (total in 14 papers)

Intellectual Analisys of Data

Software for the partial spectroscopy of human brain

S. D. Rykunova, M. N. Ustininabc, A. G. Polyaninc, V. V. Sytcheva, R. R. Llinásb

a Institute of Mathematical Problems of Biology RAS – the Branch of Keldysh Institute of Applied Mathematics RAS, Moscow Region, Russia
b New York University, New York, NY, USA
c Pushchino State Natural Sciences Institute, Pushchino, Moscow Region, Russia
References:
Abstract: The new methodology was developed to calculate spectral characteristics of various compartments of the human brain. This technology combines two types of the spatial data: 1) functional tomogram presenting spatial distribution of the electric sources and 2) anatomical structure of the brain as determined by the magnetic resonance imaging. Presently the functional tomogram is calculated from the multichannel magnetoencephalograms. In the functional tomogram, unique spatial location corresponds to each elementary oscillation. Spatial structure of the brain compartment is generated by the segmentation of magnetic resonance image. The partial spectrum is composed by the selection of frequencies, belonging to this compartment. The software implementing this methodology was developed and applied to partial spectral analysis of the alpha rhythm.
Key words: magnetic encephalography, Fourier transform, frequency-pattern data analysis, functional tomogram, magnetic resonance imaging, partial spectrum.
Received 03.05.2016, Published 10.06.2016
Document Type: Article
UDC: 612.825.5+004.925
Language: Russian
Citation: S. D. Rykunov, M. N. Ustinin, A. G. Polyanin, V. V. Sytchev, R. R. Llinás, “Software for the partial spectroscopy of human brain”, Mat. Biolog. Bioinform., 11:1 (2016), 127–140
Citation in format AMSBIB
\Bibitem{RykUstPol16}
\by S.~D.~Rykunov, M.~N.~Ustinin, A.~G.~Polyanin, V.~V.~Sytchev, R.~R.~Llin\'as
\paper Software for the partial spectroscopy of human brain
\jour Mat. Biolog. Bioinform.
\yr 2016
\vol 11
\issue 1
\pages 127--140
\mathnet{http://mi.mathnet.ru/mbb255}
\crossref{https://doi.org/10.17537/2016.11.127}
Linking options:
  • https://www.mathnet.ru/eng/mbb255
  • https://www.mathnet.ru/eng/mbb/v11/i1/p127
  • This publication is cited in the following 14 articles:
    1. S. D. Rykunov, A. I. Boyko, M. N. Ustinin, “Reconstruction of the Electrical Structure of the Human Body Using Spectral Functional Tomography”, Pattern Recognit. Image Anal., 33:4 (2023), 1315  crossref
    2. M. N. Ustinin, A. I. Boyko, S. D. Rykunov, “Functional Tomography of Complex Systems Using Spectral Analysis of Multichannel Measurement Data”, Pattern Recognit. Image Anal., 33:4 (2023), 1344  crossref
    3. Rodolfo R. Llinás, Stanislav Rykunov, Kerry D. Walton, Anna Boyko, Mikhail Ustinin, “Splitting of the magnetic encephalogram into «brain» and «non-brain» physiological signals based on the joint analysis of frequency-pattern functional tomograms and magnetic resonance images”, Front. Neural Circuits, 16 (2022)  crossref
    4. M. N. Ustinin, S. D. Rykunov, A. I. Boiko, O. A. Maslova, N. M. Pankratova, “Izuchenie sindroma defitsita vnimaniya i giperaktivnosti metodom funktsionalnoi tomografii po dannym magnitnoi entsefalografii”, Preprinty IPM im. M. V. Keldysha, 2019, 116, 24 pp.  mathnet  crossref
    5. S. D. Rykunov, E. D. Rykunova, A. I. Boiko, M. N. Ustinin, “Programmnyi kompleks “VirtEl” dlya analiza dannykh magnitnoi entsefalografii metodom virtualnykh elektrodov”, Matem. biologiya i bioinform., 14:1 (2019), 340–354  mathnet  crossref
    6. M. N. Ustinin, S. D. Rykunov, A. I. Boiko, O. A. Maslova, N. M. Pankratova, “Izuchenie sindroma defitsita vnimaniya i giperaktivnosti metodom funktsionalnoi tomografii po dannym magnitnoi entsefalografii”, Matem. biologiya i bioinform., 14:2 (2019), 517–532  mathnet  crossref
    7. N. M. Pankratova, S. D. Rykunov, M. N. Ustinin, “Lokalizatsiya spektralnykh osobennostei entsefalogramm pri psikhicheskikh rasstroistvakh”, Preprinty IPM im. M. V. Keldysha, 2018, 138, 20 pp.  mathnet  crossref
    8. A. V. Korshakov, “Sistemy interfeisov mozg–kompyuter na osnove spektroskopii blizhnego infrakrasnogo diapazona”, Matem. biologiya i bioinform., 13:1 (2018), 84–129  mathnet  crossref
    9. N. M. Pankratova, S. D. Rykunov, A. I. Boiko, D. A. Molchanova, M. N. Ustinin, “Lokalizatsiya spektralnykh osobennostei entsefalogramm pri psikhicheskikh rasstroistvakh”, Matem. biologiya i bioinform., 13:2 (2018), 322–336  mathnet  crossref
    10. M. N. Ustinin, S. D. Rykunov, A. I. Boiko, O. A. Maslova, K. D. Volton, R. R. Linas, “Otsenka napravlenii elementarnykh istochnikov alfa-ritma metodom funktsionalnoi tomografii mozga cheloveka po dannym magnitnoi entsefalografii”, Matem. biologiya i bioinform., 13:2 (2018), 426–436  mathnet  crossref
    11. N.M. Pankratova, S.D. Rykunov, M.N. Ustinin, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 7, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 2018  crossref
    12. M.N. Ustinin, S.D. Rykunov, N.M. Pankratova, A.I. Boyko, D.A. Molchanova, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 7, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 2018  crossref
    13. E.D. Rykunova, S.D. Rykunov, A.I. Boyko, M.N. Ustinin, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 7, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 2018  crossref
    14. S. D. Rykunov, E. S. Oplachko, M. N. Ustinin, R. R. Llinás, “Metody analiza dannykh magnitnoi entsefalografii v oblachnom servise MathBrain”, Matem. biologiya i bioinform., 12:1 (2017), 176–185  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :94
    References:74
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025