Loading [MathJax]/jax/output/SVG/config.js
Matematicheskaya Biologiya i Bioinformatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Biolog. Bioinform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Biologiya i Bioinformatika, 2007, Volume 2, Issue 1, Pages 73–81 (Mi mbb19)  

This article is cited in 10 scientific papers (total in 10 papers)

Proceedings of The International Conference "Mathematical Biology and Bioinformatics"

Spontaneous halt of spiral wave drift in homogeneous excitable media

Yu. E. El'kina, A. V. Moskalenkob, Ch. F. Starmerc

a Institute of Mathematical Problems of Biology, Russian Academy of Sciences
b Institute for Theoretical and Experimental Biophysics, Pushchino, Moscow Region
c Duke-NUS Graduate Medical School Singapore
References:
Abstract: In computer simulations, we found a new type of spiral wave drift in а homogeneous two-dimensional excitable medium, namely, a circular drift of the spiral wave with decrease of the drift velocity right up to its total cessation. We have investigated certain quantitative characteristics of the new spiral wave behavior. As a result, we have demonstrated that the new spiral wave behavior essentially differs from the types of its behavior that was known before. This discovery can improve comprehension of mechanisms of some potentially life-threatening cardiac arrhythmias.
Key words: excitable media, spiral waves, mathematical modeling, cardiac arrhythmia.
Received 12.04.2007, Published 24.04.2007
English version:
Mathematical Biology and Bioinformatics, 2007, Volume 2, Issue 1, Pages 1–9
DOI: https://doi.org/10.17537/2007.2.1
Document Type: Article
UDC: 577.3
Language: Russian
Citation: Yu. E. El'kin, A. V. Moskalenko, Ch. F. Starmer, “Spontaneous halt of spiral wave drift in homogeneous excitable media”, Mat. Biolog. Bioinform., 2:1 (2007), 73–81; Mat. Biolog. Bioinform., 2:1 (2007), 1–9
Citation in format AMSBIB
\Bibitem{ElkMosSta07}
\by Yu.~E.~El'kin, A.~V.~Moskalenko, Ch.~F.~Starmer
\paper Spontaneous halt of spiral wave drift in homogeneous excitable media
\jour Mat. Biolog. Bioinform.
\yr 2007
\vol 2
\issue 1
\pages 73--81
\mathnet{http://mi.mathnet.ru/mbb19}
\transl
\jour Mat. Biolog. Bioinform.
\yr 2007
\vol 2
\issue 1
\pages 1--9
\crossref{https://doi.org/10.17537/2007.2.1}
Linking options:
  • https://www.mathnet.ru/eng/mbb19
  • https://www.mathnet.ru/eng/mbb/v2/i1/p73
  • This publication is cited in the following 10 articles:
    1. A. V. Moskalenko, S. A. Makhortykh, “Bifurkatsionnoe pyatno na parametricheskom portrete dvumernoi versii modeli Alieva—Panfilova”, Preprinty IPM im. M. V. Keldysha, 2024, 061, 44 pp.  mathnet  crossref
    2. Nazar Nikolayevich Nazarenko, Sergey Mikhailovich Pokhlebayev, Aleksandr Vladimirovich Malaev, Vladimir Vladislavovich Deryagin, Anastasia Vitalyevna Anukhina, “Ecological and coenotic groups of Southern Trans-Urals vascular plants flora and biotopes phytoindication”, Samara Journal of Science, 11:2 (2022), 85  crossref
    3. A. V. Moskalenko, R. K. Tetuev, S. A. Makhortykh, “K voprosu o sovremennom sostoyanii teorii kolebanii”, Preprinty IPM im. M. V. Keldysha, 2019, 044, 32 pp.  mathnet  crossref  elib
    4. A. V. Moskalenko, R. K. Tetuev, S. A. Makhortykh, “O sostoyanii issledovanii bifurkatsionnykh fenomenov pamyati i zapazdyvaniya”, Preprinty IPM im. M. V. Keldysha, 2019, 109, 44 pp.  mathnet  crossref
    5. L. G. Khanina, M. V. Bobrovsky, V. E. Smirnov, I. S. Grozovskaya, M. S. Romanov, N. V. Lukina, L. G. Isaeva, “Ground vegetation modeling through functional species groups and patches in the forest floor”, Mat. Biolog. Bioinform., 10:1 (2015), 15–33  mathnet  mathnet  crossref
    6. A. M. Denisov, I. A. Pavelchak, “A numerical method for determining the localized initial condition for some mathematical models of the heart excitation”, Math. Models Comput. Simul., 5:1 (2013), 75–80  mathnet  crossref  mathscinet  elib
    7. Pavelchak I.A., “Chislennyi metod opredeleniya parametrov v modelyakh fitts-khyu-nagumo i alieva-panfilova”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13:1 (2012), 172–176 A numerical method of parameter reconstruction in the fitzhugh-nagumo and aliev-panfilov models  mathnet  elib
    8. Pavelchak I.A., “Chislennyi metod opredeleniya lokalizovannogo nachalnogo usloviya v modelyakh fitts-khyu–nagumo i alieva–panfilova”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 3 (2011), 7–13  mathscinet  zmath  elib
    9. S. E. Kurushina, A. A. Ivanov, Yu. V. Zhelnov, I. P. Zavershinskii, V. V. Maksimov, “Modelirovanie prostranstvenno-vremennykh struktur v sisteme khischnik-zhertva vo vneshnei fluktuiruyuschei srede”, Matem. modelirovanie, 22:10 (2010), 3–17  mathnet  mathscinet
    10. Kurushina S.E., Ivanov A.A., Zhelnov Yu.V., Zavershinskii I.P., Maksimov V.V., “Avtovolnovye struktury vo vneshnei fluktuiruyuschei srede”, Izv. Samarskogo nauchnogo tsentra RAN, 12:4 (2010), 41–50  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:1107
    Full-text PDF :186
    References:93
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025