Abstract:
In computer simulations, we found a new type of spiral wave drift in а homogeneous two-dimensional excitable medium, namely, a circular drift of the spiral wave with decrease of the drift velocity right up to its total cessation. We have investigated certain quantitative characteristics of the new spiral wave behavior. As
a result, we have demonstrated that the new spiral wave behavior essentially differs from the types of its behavior that was known before. This discovery can improve comprehension of mechanisms of some potentially life-threatening cardiac arrhythmias.
Citation:
Yu. E. El'kin, A. V. Moskalenko, Ch. F. Starmer, “Spontaneous halt of spiral wave drift in homogeneous excitable media”, Mat. Biolog. Bioinform., 2:1 (2007), 73–81; Mat. Biolog. Bioinform., 2:1 (2007), 1–9
This publication is cited in the following 10 articles:
A. V. Moskalenko, S. A. Makhortykh, “Bifurkatsionnoe pyatno na parametricheskom portrete dvumernoi versii modeli Alieva—Panfilova”, Preprinty IPM im. M. V. Keldysha, 2024, 061, 44 pp.
Nazar Nikolayevich Nazarenko, Sergey Mikhailovich Pokhlebayev, Aleksandr Vladimirovich Malaev, Vladimir Vladislavovich Deryagin, Anastasia Vitalyevna Anukhina, “Ecological and coenotic groups of Southern Trans-Urals vascular plants flora and biotopes phytoindication”, Samara Journal of Science, 11:2 (2022), 85
A. V. Moskalenko, R. K. Tetuev, S. A. Makhortykh, “K voprosu o sovremennom sostoyanii teorii kolebanii”, Preprinty IPM im. M. V. Keldysha, 2019, 044, 32 pp.
A. V. Moskalenko, R. K. Tetuev, S. A. Makhortykh, “O sostoyanii issledovanii bifurkatsionnykh fenomenov pamyati i zapazdyvaniya”, Preprinty IPM im. M. V. Keldysha, 2019, 109, 44 pp.
L. G. Khanina, M. V. Bobrovsky, V. E. Smirnov, I. S. Grozovskaya, M. S. Romanov, N. V. Lukina, L. G. Isaeva, “Ground vegetation modeling through functional species groups and patches in the forest floor”, Mat. Biolog. Bioinform., 10:1 (2015), 15–33
A. M. Denisov, I. A. Pavelchak, “A numerical method for determining the localized initial condition for some mathematical models of the heart excitation”, Math. Models Comput. Simul., 5:1 (2013), 75–80
Pavelchak I.A., “Chislennyi metod opredeleniya parametrov v modelyakh fitts-khyu-nagumo i alieva-panfilova”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13:1 (2012), 172–176
A numerical method of parameter reconstruction in the fitzhugh-nagumo and aliev-panfilov models
Pavelchak I.A., “Chislennyi metod opredeleniya lokalizovannogo nachalnogo usloviya v modelyakh fitts-khyu–nagumo i alieva–panfilova”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 3 (2011), 7–13
S. E. Kurushina, A. A. Ivanov, Yu. V. Zhelnov, I. P. Zavershinskii, V. V. Maksimov, “Modelirovanie prostranstvenno-vremennykh struktur v sisteme khischnik-zhertva vo vneshnei fluktuiruyuschei srede”, Matem. modelirovanie, 22:10 (2010), 3–17