Mathematische Nachrichten
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematische Nachrichten, 2016, Volume 289, Issue 17, Pages 2133–2146
DOI: https://doi.org/10.1002/mana.201500439
(Mi matna4)
 

This article is cited in 7 scientific papers (total in 7 papers)

Conformal spectral stability estimates for the Neumann Laplacian

V. I. Burenkovab, V. Gol'dshteinc, A. Ukhlovc

a Peoples' Friendship University of Russia, Moscow, 6 Mikluho-Maklay St., Russia
b Steklov Mathematical Institute, Moscow, 8 Gubkin St., Russia
c Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
Citations (7)
Abstract: We study the eigenvalue problem for the Neumann-–Laplace operator in conformal regular planar domains $\Omega\subset\mathbb C$. Conformal regular domains support the Poincaré-–Sobolev inequality and this allows us to estimate the variation of the eigenvalues of the Neumann Laplacian upon domain perturbation via energy type integrals. Boundaries of such domains can have any Hausdorff dimension between one and two.
Funding agency Grant number
United States - Israel Binational Science Foundation (BSF) 2014055
Funded by United States-Israel Binational Science Foundation. Grant Number: 2014055
Received: 20.11.2015
Accepted: 18.02.2017
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/matna4
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:155
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024