Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2008, Volume 15, Number 2, Pages 50–54 (Mi mais98)  

Bifurcations of homogeneous cycle of generalized cubic Shrodinger equation in the triangle

D. A. Kulikov

Yaroslavl State University
References:
Abstract: We consider the generalized cubic Scrodinger equation in rectangular equilateral triangle provided that solution satisfies the homogeneous Neumann boundary condition. Stability and local bifurcations of homogeneous cycle are studied. We show that the bifurcation of two nonhomogeneous cycles takes place when homogeneous cycle loses its stability.
Received: 11.04.2008
UDC: 517.9
Language: Russian
Citation: D. A. Kulikov, “Bifurcations of homogeneous cycle of generalized cubic Shrodinger equation in the triangle”, Model. Anal. Inform. Sist., 15:2 (2008), 50–54
Citation in format AMSBIB
\Bibitem{Kul08}
\by D.~A.~Kulikov
\paper Bifurcations of homogeneous cycle of generalized cubic Shrodinger equation in the triangle
\jour Model. Anal. Inform. Sist.
\yr 2008
\vol 15
\issue 2
\pages 50--54
\mathnet{http://mi.mathnet.ru/mais98}
Linking options:
  • https://www.mathnet.ru/eng/mais98
  • https://www.mathnet.ru/eng/mais/v15/i2/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :86
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024