Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2008, Volume 15, Number 2, Pages 36–45 (Mi mais96)  

This article is cited in 3 scientific papers (total in 3 papers)

Lang-Kobayashi model dynamics features in the critical case

D. V. Glazkov

Yaroslavl State University
Full-text PDF (476 kB) Citations (3)
References:
Abstract: We investigate the stability of periodic solutions of Lang-Kobayashi (LK) system in the critical case of infinite dimension. We construct and study special evolutional equations playing the role of normal forms. We compare our results concerning the dynamics of LK model with those that are already known.
UDC: 517.929
Language: Russian
Citation: D. V. Glazkov, “Lang-Kobayashi model dynamics features in the critical case”, Model. Anal. Inform. Sist., 15:2 (2008), 36–45
Citation in format AMSBIB
\Bibitem{Gla08}
\by D.~V.~Glazkov
\paper Lang-Kobayashi model dynamics features in the critical case
\jour Model. Anal. Inform. Sist.
\yr 2008
\vol 15
\issue 2
\pages 36--45
\mathnet{http://mi.mathnet.ru/mais96}
Linking options:
  • https://www.mathnet.ru/eng/mais96
  • https://www.mathnet.ru/eng/mais/v15/i2/p36
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :138
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024