Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2024, Volume 31, Number 3, Pages 316–337
DOI: https://doi.org/10.18255/1818-1015-2024-3-316-337
(Mi mais830)
 

Discrete mathematics in relation to computer science

Estimation of interpolation projectors using Legendre polynomials

M. V. Nevskii

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
References:
Abstract: We give some estimates for the minimum projector norm under linear interpolation on a compact set in ${\mathbb R}^n$. Let $\Pi_1({\mathbb R}^n)$ be the space of polynomials in $n$ variables of degree at most $1$, $\Omega$ is a compactum in ${\mathbb R}^n$, $K={\mathrm conv}(\Omega)$. We will assume that ${\mathrm vol}(K)\geq 0$. Let the points $x^{(j)}\in \Omega$, $1\leq j\leq n+1,$ be the vertices of an $n$-dimensional nondegenerate simplex. The interpolation projector $P:C(\Omega)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}$ is defined by the equations $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$. By $\|P\|_\Omega$ we mean the norm of $P$ as an operator from $C(\Omega)$ to $C(\Omega)$. By $\theta_n(\Omega)$ we denote the minimal norm $\|P\|_\Omega$ of all operators $P$ with nodes belonging to $\Omega$. By ${\mathrm simp}(E)$ we denote the maximal volume of the simplex with vertices in $E$. We establish the inequalities $\chi_n^{-1}\left(\frac{{\mathrm vol}(K)}{{\mathrm simp}(\Omega)}\right)\leq \theta_n(\Omega)\leq n+1.$ Here $\chi_n$ is the standardized Legendre polynomial of degree $n$. The lower estimate is proved using the obtained characterization of Legendre polynomials through the volumes of convex polyhedra. More specifically, we show that for every $\gamma\ge 1$ the volume of the set $\left\{x=(x_1,\dots ,x_n)\in{\mathbb R}^n : \sum |x_j| +\left|1- \sum x_j\right|\le\gamma\right\}$ is equal to ${\chi_n(\gamma)}/{n!}$. In the case when $\Omega$ is an $n$-dimensional cube or an $n$-dimensional ball, the lower estimate gives the possibility to obtain the inequalities of the form $\theta_n(\Omega)\geqslant c\sqrt{n}$. Also we formulate some open questions.
Keywords: polynomial interpolation, projector, norm, esimate, Legendre polynomials.
Received: 13.08.2024
Revised: 26.08.2024
Accepted: 28.08.2024
Document Type: Article
UDC: 514.17+517.51+519.6
MSC: 41A05, 52B55, 52C07
Language: Russian
Citation: M. V. Nevskii, “Estimation of interpolation projectors using Legendre polynomials”, Model. Anal. Inform. Sist., 31:3 (2024), 316–337
Citation in format AMSBIB
\Bibitem{Nev24}
\by M.~V.~Nevskii
\paper Estimation of interpolation projectors using Legendre polynomials
\jour Model. Anal. Inform. Sist.
\yr 2024
\vol 31
\issue 3
\pages 316--337
\mathnet{http://mi.mathnet.ru/mais830}
\crossref{https://doi.org/10.18255/1818-1015-2024-3-316-337}
Linking options:
  • https://www.mathnet.ru/eng/mais830
  • https://www.mathnet.ru/eng/mais/v31/i3/p316
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024