Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2021, Volume 28, Number 2, Pages 186–197
DOI: https://doi.org/10.18255/1818-1015-2021-2-186-197
(Mi mais743)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete mathematics in relation to computer science

On properties of a regular simplex inscribed into a ball

M. V. Nevskii

P. G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
Full-text PDF (601 kB) Citations (2)
References:
Abstract: Let $B$ be a Euclidean ball in ${\mathbb R}^n$ and let $C(B)$ be a space of continuos functions $f:B\to{\mathbb R}$ with the uniform norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ we mean a set of polynomials of degree $\leq 1$, i. e., a set of linear functions upon ${\mathbb R}^n$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in B$ is defined by the equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$, $j=1,\ldots, n+1$.The norm of $P$ as an operator from $C(B)$ to $C(B)$ can be calculated by the formula $\|P\|_B=\max_{x\in B}\sum |\lambda_j(x)|.$ Here $\lambda_j$ are the basic Lagrange polynomials corresponding to the $n$-dimensional nondegenerate simplex $S$ with the vertices $x^{(j)}$. Let $P^\prime$ be a projector having the nodes in the vertices of a regular simplex inscribed into the ball. We describe the points $y\in B$ with the property $\|P^\prime\|_B=\sum |\lambda_j(y)|$. Also we formulate some geometric conjecture which implies that $\|P^\prime\|_B$ is equal to the minimal norm of an interpolation projector with nodes in $B$. We prove that this conjecture holds true at least for $n=1,2,3,4$.
Keywords: simplex, ball, linear interpolation, projector, norm.
Received: 28.04.2021
Revised: 25.05.2021
Accepted: 26.05.2021
Document Type: Article
UDC: 514.17, 517.51, 519.6
Language: Russian
Citation: M. V. Nevskii, “On properties of a regular simplex inscribed into a ball”, Model. Anal. Inform. Sist., 28:2 (2021), 186–197
Citation in format AMSBIB
\Bibitem{Nev21}
\by M.~V.~Nevskii
\paper On properties of a regular simplex inscribed into a ball
\jour Model. Anal. Inform. Sist.
\yr 2021
\vol 28
\issue 2
\pages 186--197
\mathnet{http://mi.mathnet.ru/mais743}
\crossref{https://doi.org/10.18255/1818-1015-2021-2-186-197}
Linking options:
  • https://www.mathnet.ru/eng/mais743
  • https://www.mathnet.ru/eng/mais/v28/i2/p186
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024