Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2020, Volume 27, Number 1, Pages 40–47
DOI: https://doi.org/10.18255/1818-1015-2020-1-40-47
(Mi mais701)
 

Theory of computing

On a segment partition for entropy estimation

E. A. Timofeev

P. G. Demidov Yaroslavl State University, 14 Sovetskaya, Yaroslavl 150003, Russia
References:
Abstract: Let $Q_n$ be a partition of the interval $[0,1]$ defines as
$$
\begin{array}{l} Q_1 =\{0,q^2,q,1\}. \\ Q_{n+1}' = qQ_n \cap q^2Q_n, \quad Q_{n+1}'' = q^2+qQ_n \cap qQ_n, \quad Q_{n+1}'''= q^2+qQ_n \cap q+q^2Q_n, \\ Q_{n+1} = Q_{n+1}'\cup Q_{n+1}'' \cup Q_{n+1}''', \end{array}
$$
where $q^2+q=1$.
The sequence $d= 1,2,1,0,1,2,1,0,1,0,1,2,1,0,1,2,1,\dots$ defines as follows.
$$
\begin{array}{l} d_1=1, \ d_2=2,\ d_4 =0; \\ d[2F_{2n}+1 : 2F_{2n+1}+1] = d[1:2F_{2n-1}+1];\\ \quad n = 0,1,2,\dots;\\ d[2F_{2n+1}+2 : 2F_{2n+1}+2F_{2n-2}] = d[2F_{2n-1}+2:2F_{2n}];\\ d[2F_{2n+1}+2F_{2n-2}+1 : 2F_{2n+1}+2F_{2n-1}+1] = d[1:2F_{2n-3}+1];\\ d[2F_{2n+1}+2F_{2n-1}+2 : 2F_{2n+2}] = d[2F_{2n-1}+2:2F_{2n}];\\ \quad n = 1,2,3,\dots;\\ \end{array}
$$
where $F_n$ are Fibonacci numbers ($F_{-1} = 0$, $F_0=F_1=1$).
The main result of this paper.
Theorem.
\begin{gather*} Q_n' = 1 - Q_n''' =\left \{ \sum_{i=1}^k q^{n+d_i}, \ k=0,1,\dots, m_n\right\}, \\ Q_n'' = 1 - Q_n'' = \left\{q^2 + \sum_{i=m_n}^k q^{n+d_i}, k=m_n-1,m_n,\dots, m_{n+1} \right\}, \end{gather*}
where $m_{2n} = 2F_{2n-2}$, $m_{2n+1} = 2F_{2n-1}+1$.
Keywords: measure, metric, entropy, estimation, unbiased, self-similarity, Bernoulli measure.
Received: 23.11.2019
Revised: 18.02.2020
Accepted: 28.02.2020
Document Type: Article
UDC: 519.17
MSC: 94A17
Language: Russian
Citation: E. A. Timofeev, “On a segment partition for entropy estimation”, Model. Anal. Inform. Sist., 27:1 (2020), 40–47
Citation in format AMSBIB
\Bibitem{Tim20}
\by E.~A.~Timofeev
\paper On a segment partition for entropy estimation
\jour Model. Anal. Inform. Sist.
\yr 2020
\vol 27
\issue 1
\pages 40--47
\mathnet{http://mi.mathnet.ru/mais701}
\crossref{https://doi.org/10.18255/1818-1015-2020-1-40-47}
Linking options:
  • https://www.mathnet.ru/eng/mais701
  • https://www.mathnet.ru/eng/mais/v27/i1/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :41
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024