Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2019, Volume 26, Number 3, Pages 441–449
DOI: https://doi.org/10.18255/1818-1015-441-449
(Mi mais689)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete mathematics in relation to computer science

Geometric estimates in interpolation on an $n$-dimensional ball

M. V. Nevskii

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150003, Russian Federation
Full-text PDF (640 kB) Citations (2)
References:
Abstract: Suppose $n\in {\mathbb N}$. Let $B_n$ be a Euclidean unit ball in ${\mathbb R}^n$ given by the inequality $\|x\|\leq 1$, $\|x\|:=\left(\sum\limits_{i=1}^n x_i^2\right)^{\frac{1}{2}}$. By $C(B_n)$ we mean a set of continuous functions $f:B_n\to{\mathbb R}$ with the norm $\|f\|_{C(B_n)}:=\max\limits_{x\in B_n}|f(x)|$. The symbol $\Pi_1\left({\mathbb R}^n\right)$ denotes a set of polynomials in $n$ variables of degree $\leq 1$, i. e., linear functions upon ${\mathbb R}^n$. Assume that $x^{(1)}, \ldots, x^{(n+1)}$ are vertices of an $n$-dimensional nondegenerate simplex $S\subset B_n$. The interpolation projector $P:C(B_n)\to \Pi_1({\mathbb R}^n)$ corresponding to $S$ is defined by the equalities $Pf\left(x^{(j)}\right)=
f\left(x^{(j)}\right).$ Denote by $\|P\|_{B_n}$ the norm of $P$ as an operator from $C(B_n)$ onto $C(B_n)$. Let us define $\theta_n(B_n)$ as the minimal value of $\|P\|_{B_n}$ under the condition $x^{(j)}\in B_n$. We describe the approach in which the norm of the projector can be estimated from the bottom through the volume of the simplex. Let $\chi_n(t):=\frac{1}{2^nn!}\left[ (t^2-1)^n \right] ^{(n)}$ be the standardized Legendre polynomial of degree $n$. We prove that $ \|P\|_{B_n} \geq \chi_n^{-1} \left(\frac{\mathrm{vol}(B_n)}{\mathrm{vol}(S)}\right).$ From this, we obtain the equivalence $\theta_n(B_n)$ $\asymp$ $\sqrt{n}$. Also we estimate the constants from such inequalities and give the comparison with the similar relations for linear interpolation upon the $n$-dimensional unit cube. These results have applications in polynomial interpolation and computational geometry.
Keywords: simplex, ball, linear interpolation, projector, norm, estimate.
Received: 25.01.2019
Revised: 09.06.2019
Accepted: 17.06.2019
Document Type: Article
UDC: 514.17+517.51+519.6
Language: Russian
Citation: M. V. Nevskii, “Geometric estimates in interpolation on an $n$-dimensional ball”, Model. Anal. Inform. Sist., 26:3 (2019), 441–449
Citation in format AMSBIB
\Bibitem{Nev19}
\by M.~V.~Nevskii
\paper Geometric estimates in interpolation on an $n$-dimensional ball
\jour Model. Anal. Inform. Sist.
\yr 2019
\vol 26
\issue 3
\pages 441--449
\mathnet{http://mi.mathnet.ru/mais689}
\crossref{https://doi.org/10.18255/1818-1015-441-449}
Linking options:
  • https://www.mathnet.ru/eng/mais689
  • https://www.mathnet.ru/eng/mais/v26/i3/p441
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025