|
This article is cited in 7 scientific papers (total in 7 papers)
Computing methodologies and applications
Linear interpolation on a Euclidean ball in ${\mathbb R}^n$
M. V. Nevskii, A. Yu. Ukhalov P.G. Demidov Yaroslavl State University,
Sovetskaya str., 14, Yaroslavl, 150003, Russian Federation
Abstract:
For $x^{(0)}\in{\mathbb R}^n, R>0$, by $B=B(x^{(0)};R)$ we denote
a Euclidean ball in ${\mathbb R}^n$ given by the inequality
$\|x-x^{(0)}\|\leq R$, $\|x\|:=\left(\sum_{i=1}^n x_i^2\right)^{1/2}$.
Put $B_n:=B(0,1)$.
We mean by
$C(B)$ the space of continuous functions
$f:B\to{\mathbb R}$ with the norm
$\|f\|_{C(B)}:=\max_{x\in B}|f(x)|$ and by
$\Pi_1\left({\mathbb R}^n\right)$ the set of polynomials in
$n$ variables of degree $\leq 1$, i. e. linear functions on
${\mathbb R}^n$.
Let
$x^{(1)}, \ldots, x^{(n+1)}$
be the vertices of
$n$-dimensional nondegenerate simplex $S\subset B$.
The interpolation projector
$P:C(B)\to \Pi_1({\mathbb R}^n)$ corresponding to
$S$ is defined by the equalities
$Pf\left(x^{(j)}\right)=
f\left(x^{(j)}\right).$ Denote by $\|P\|_B$ the norm of $P$ as an operator
from $C(B)$ into $C(B)$.
Let us define $\theta_n(B)$ as minimal value of
$\|P\|_B$ under the condition $x^{(j)}\in B$.
In the paper, we obtain the formula to compute $\|P\|_B$ making use
of $x^{(0)}$, $R$,
and coefficients of basic Lagrange polynomials of $S$.
In more details we study the case when $S$ is a regular
simplex inscribed into $B_n$.
In this situation, we prove that
$\|P\|_{B_n}=\max\{\psi(a),\psi(a+1)\},$ where
$\psi(t)=\frac{2\sqrt{n}}{n+1}\bigl(t(n+1-t)\bigr)^{1/2}+
\bigl|1-\frac{2t}{n+1}\bigr|$ $(0\leq t\leq n+1)$ and
integer $a$ has the form $a=\bigl\lfloor\frac{n+1}{2}-\frac{\sqrt{n+1}}{2}\bigr\rfloor.$
For this projector,
$\sqrt{n}\leq\|P\|_{B_n}\leq\sqrt{n+1}$. The equality $\|P\|_{B_n}=\sqrt{n+1}$
takes place if and only if
$\sqrt{n+1}$ is an integer number. We give the precise values of
$\theta_n(B_n)$ for $1\leq n\leq 4$.
To supplement theoretical results we present computational data.
We also discuss some other questions concerning interpolation on a Euclidean ball.
Keywords:
$n$-dimensional simplex, $n$-dimensional ball, linear interpolation, projector, norm.
Received: 08.12.2018 Revised: 21.02.2019 Accepted: 25.02.2019
Citation:
M. V. Nevskii, A. Yu. Ukhalov, “Linear interpolation on a Euclidean ball in ${\mathbb R}^n$”, Model. Anal. Inform. Sist., 26:2 (2019), 279–296
Linking options:
https://www.mathnet.ru/eng/mais679 https://www.mathnet.ru/eng/mais/v26/i2/p279
|
|