Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2019, Volume 26, Number 2, Pages 279–296
DOI: https://doi.org/10.18255/1818-1015-279-296
(Mi mais679)
 

This article is cited in 7 scientific papers (total in 7 papers)

Computing methodologies and applications

Linear interpolation on a Euclidean ball in ${\mathbb R}^n$

M. V. Nevskii, A. Yu. Ukhalov

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150003, Russian Federation
Full-text PDF (778 kB) Citations (7)
References:
Abstract: For $x^{(0)}\in{\mathbb R}^n, R>0$, by $B=B(x^{(0)};R)$ we denote a Euclidean ball in ${\mathbb R}^n$ given by the inequality $\|x-x^{(0)}\|\leq R$, $\|x\|:=\left(\sum_{i=1}^n x_i^2\right)^{1/2}$. Put $B_n:=B(0,1)$. We mean by $C(B)$ the space of continuous functions $f:B\to{\mathbb R}$ with the norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|$ and by $\Pi_1\left({\mathbb R}^n\right)$ the set of polynomials in $n$ variables of degree $\leq 1$, i. e. linear functions on ${\mathbb R}^n$. Let $x^{(1)}, \ldots, x^{(n+1)}$ be the vertices of $n$-dimensional nondegenerate simplex $S\subset B$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ corresponding to $S$ is defined by the equalities $Pf\left(x^{(j)}\right)=
f\left(x^{(j)}\right).$ Denote by $\|P\|_B$ the norm of $P$ as an operator from $C(B)$ into $C(B)$. Let us define $\theta_n(B)$ as minimal value of $\|P\|_B$ under the condition $x^{(j)}\in B$. In the paper, we obtain the formula to compute $\|P\|_B$ making use of $x^{(0)}$, $R$, and coefficients of basic Lagrange polynomials of $S$. In more details we study the case when $S$ is a regular simplex inscribed into $B_n$. In this situation, we prove that $\|P\|_{B_n}=\max\{\psi(a),\psi(a+1)\},$ where $\psi(t)=\frac{2\sqrt{n}}{n+1}\bigl(t(n+1-t)\bigr)^{1/2}+ \bigl|1-\frac{2t}{n+1}\bigr|$ $(0\leq t\leq n+1)$ and integer $a$ has the form $a=\bigl\lfloor\frac{n+1}{2}-\frac{\sqrt{n+1}}{2}\bigr\rfloor.$ For this projector, $\sqrt{n}\leq\|P\|_{B_n}\leq\sqrt{n+1}$. The equality $\|P\|_{B_n}=\sqrt{n+1}$ takes place if and only if $\sqrt{n+1}$ is an integer number. We give the precise values of $\theta_n(B_n)$ for $1\leq n\leq 4$. To supplement theoretical results we present computational data. We also discuss some other questions concerning interpolation on a Euclidean ball.
Keywords: $n$-dimensional simplex, $n$-dimensional ball, linear interpolation, projector, norm.
Received: 08.12.2018
Revised: 21.02.2019
Accepted: 25.02.2019
Document Type: Article
UDC: 514.17+517.51+519.6
Language: Russian
Citation: M. V. Nevskii, A. Yu. Ukhalov, “Linear interpolation on a Euclidean ball in ${\mathbb R}^n$”, Model. Anal. Inform. Sist., 26:2 (2019), 279–296
Citation in format AMSBIB
\Bibitem{NevUkh19}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper Linear interpolation on a Euclidean ball in ${\mathbb R}^n$
\jour Model. Anal. Inform. Sist.
\yr 2019
\vol 26
\issue 2
\pages 279--296
\mathnet{http://mi.mathnet.ru/mais679}
\crossref{https://doi.org/10.18255/1818-1015-279-296}
Linking options:
  • https://www.mathnet.ru/eng/mais679
  • https://www.mathnet.ru/eng/mais/v26/i2/p279
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025