Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2019, Volume 26, Number 1, Pages 90–100
DOI: https://doi.org/10.18255/1818-1015-2019-1-90-100
(Mi mais666)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computer Networks and Communications

Development and study of algorithms for the formation of rules for network security nodes in the multi-cloud platform

D. I. Parfenov, I. P. Bolodurina, V. A. Torchin

Orenburg State University, 13 Pobedy pr., Orenburg 460018, Russia
Full-text PDF (502 kB) Citations (1)
References:
Abstract: As part of the study, existing solutions aimed at ensuring the security of the network perimeter of the multi-cloud platform were considered. It is established that the most acute problem is the effective formation of rules on firewalls. Existing approaches do not allow optimizing the list of rules on nodes that control access to the network. The aim of the study is to increase the effectiveness of firewall tools by conflict-free optimization of security rules and the use of a neural network approach in software-defined networks. The proposed solution is based on the sharing of intelligent mathematical approaches and modern technologies of virtualization of network functions. In the course of experimental studies, a comparative analysis of the traditional means of rule formation, the neural network approach, and the genetic algorithm was carried out. It is recommended to use the multilayer perceptron neural network classifier for automatic construction of network security rules since it gives the best results in terms of performance. It is also recommended to reduce the size of the firewall security rule list using the Kohonen network, as this tool shows the best performance. A conflict-free optimization algorithm was introduced into the designed architecture, which produces finite optimization by ranking and deriving the most common exceptions from large restrictive rules, which allows increasing protection against attacks that are aimed at identifying security rules at the bottom of the firewall list. On the basis of the proposed solution, the adaptive firewall module was implemented as part of the research.
Keywords: adaptive firewall, software-defined network, multi-cloud platforms, neural network, network function virtualization, cyber security.
Funding agency Grant number
Russian Foundation for Basic Research 18-07-01446_а
16-29-09639_офи_м
The work was supported by Russian Foundation for Basic Research, Projects No. 18-07-01446, No. 16-29-09639.
Received: 10.01.2019
Revised: 15.02.2019
Accepted: 17.02.2019
Bibliographic databases:
Document Type: Article
UDC: 004.7
Language: Russian
Citation: D. I. Parfenov, I. P. Bolodurina, V. A. Torchin, “Development and study of algorithms for the formation of rules for network security nodes in the multi-cloud platform”, Model. Anal. Inform. Sist., 26:1 (2019), 90–100
Citation in format AMSBIB
\Bibitem{ParBolTor19}
\by D.~I.~Parfenov, I.~P.~Bolodurina, V.~A.~Torchin
\paper Development and study of algorithms for the formation of rules for network security nodes in the multi-cloud platform
\jour Model. Anal. Inform. Sist.
\yr 2019
\vol 26
\issue 1
\pages 90--100
\mathnet{http://mi.mathnet.ru/mais666}
\crossref{https://doi.org/10.18255/1818-1015-2019-1-90-100}
\elib{https://elibrary.ru/item.asp?id=37069559}
Linking options:
  • https://www.mathnet.ru/eng/mais666
  • https://www.mathnet.ru/eng/mais/v26/i1/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :136
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024