Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2018, Volume 25, Number 6, Pages 680–691
DOI: https://doi.org/10.18255/1818-1015-680-691
(Mi mais656)
 

This article is cited in 4 scientific papers (total in 4 papers)

Computational Geometry

On some problems for a simplex and a ball in ${\mathbb R}^n$

M. V. Nevskii

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
Full-text PDF (571 kB) Citations (4)
References:
Abstract: Let $C$ be a convex body and let $S$ be a nondegenerate simplex in ${\mathbb R}^n$. Denote by $\tau S$ the image of $S$ under homothety with a center of homothety in the center of gravity of $S$ and the ratio $\tau$. We mean by $\xi(C;S)$ the minimal $\tau>0$ such that $C$ is a subset of the simplex $\tau S$. Define $\alpha(C;S)$ as the minimal $\tau>0$ such that $C$ is contained in a translate of $\tau S$. Earlier the author has proved the equalities $\xi(C;S)=(n+1)\max\limits_{1\leq j\leq n+1} \max\limits_{x\in C}(-\lambda_j(x))+1$ (if $C\not\subset S$), $\alpha(C;S)= \sum\limits_{j=1}^{n+1} \max\limits_{x\in C} (-\lambda_j(x))+1.$ Here $\lambda_j$ are the linear functions that are called the basic Lagrange polynomials corresponding to $S$. The numbers $\lambda_j(x),\ldots, \lambda_{n+1}(x)$ are the barycentric coordinates of a point $x\in{\mathbb R}^n$. In his previous papers, the author investigated these formulae in the case when $C$ is the $n$-dimensional unit cube $Q_n=[0,1]^n$. The present paper is related to the case when $C$ coincides with the unit Euclidean ball $B_n=\{x: \|x\|\leq 1\},$ where $\|x\|=\left(\sum\limits_{i=1}^n x_i^2 \right)^{1/2}.$ We establish various relations for $\xi(B_n;S)$ and $\alpha(B_n;S)$, as well as we give their geometric interpretation. For example, if $\lambda_j(x)= l_{1j}x_1+\ldots+ l_{nj}x_n+l_{n+1,j},$ then $\alpha(B_n;S)= \sum\limits_{j=1}^{n+1}\left(\sum\limits_{i=1}^n l_{ij}^2\right)^{1/2}$. The minimal possible value of each characteristics $\xi(B_n;S)$ and $\alpha(B_n;S)$ for $S\subset B_n$ is equal to $n$. This value corresponds to a regular simplex inscribed into $B_n$. Also we compare our results with those obtained in the case $C=Q_n$.
Keywords: $n$-dimensional simplex, $n$-dimensional ball, homothety, absorption index.
Received: 20.09.2018
Revised: 30.10.2018
Accepted: 10.11.2018
Document Type: Article
UDC: 514.17+517.51+519.6
Language: Russian
Citation: M. V. Nevskii, “On some problems for a simplex and a ball in ${\mathbb R}^n$”, Model. Anal. Inform. Sist., 25:6 (2018), 680–691
Citation in format AMSBIB
\Bibitem{Nev18}
\by M.~V.~Nevskii
\paper On some problems for a simplex and a ball in ${\mathbb R}^n$
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 6
\pages 680--691
\mathnet{http://mi.mathnet.ru/mais656}
\crossref{https://doi.org/10.18255/1818-1015-680-691}
Linking options:
  • https://www.mathnet.ru/eng/mais656
  • https://www.mathnet.ru/eng/mais/v25/i6/p680
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :123
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024