Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2018, Volume 25, Number 4, Pages 388–401
DOI: https://doi.org/10.18255/1818-1015-2018-4-388-401
(Mi mais636)
 

Graph Theory

The spanning tree of a divisible multiple graph

A. V. Smirnov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russia
References:
Abstract: In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect $2$ or $k+1$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges, and it can be the common ending vertex to $k$ linked edges of a multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of any other multi-edge. Special attention is paid to the class of divisible multiple graphs. The main peculiarity of them is a possibility to divide the graph into $k$ parts, which are adjusted on the linked edges and which have no common edges. Each part is an ordinary graph. The definition of a multiple tree is stated and the basic properties of such trees are studied. Unlike ordinary trees, the number of edges in a multiple tree is not fixed. In the article, the evaluation of the minimum and maximum number of edges in the divisible tree is stated and proved. Next, the definitions of the spanning tree and the complete spanning tree of a multiple graph are given. The criterion of completeness of the spanning tree is proved for divisible graphs. It is also proved that a complete spanning tree exists in any divisible graph. If the multiple graph is weighted, the minimum spanning tree problem and the minimum complete spanning tree problem can be set. In the article, we suggest a heuristic algorithm for the minimum complete spanning tree problem for a divisible graph.
Keywords: multiple graph, multiple tree, divisible graph, spanning tree, complete spanning tree, minimum spanning tree.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-00823_а
This work was supported by the Russian Foundation for Basic Research under the Grant No 17-07-00823 A.
Received: 29.07.2018
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. V. Smirnov, “The spanning tree of a divisible multiple graph”, Model. Anal. Inform. Sist., 25:4 (2018), 388–401
Citation in format AMSBIB
\Bibitem{Smi18}
\by A.~V.~Smirnov
\paper The spanning tree of a divisible multiple graph
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 4
\pages 388--401
\mathnet{http://mi.mathnet.ru/mais636}
\crossref{https://doi.org/10.18255/1818-1015-2018-4-388-401}
\elib{https://elibrary.ru/item.asp?id=35452926}
Linking options:
  • https://www.mathnet.ru/eng/mais636
  • https://www.mathnet.ru/eng/mais/v25/i4/p388
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :53
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024