Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2018, Volume 25, Number 3, Pages 331–342
DOI: https://doi.org/10.18255/1818-1015-2018-3-331-342
(Mi mais632)
 

This article is cited in 1 scientific paper (total in 1 paper)

Function Theory

Isoperimetric and functional inequalities

V. S. Klimov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation
Full-text PDF (669 kB) Citations (1)
References:
Abstract: We establish lower estimates for an integral functional
$$\int\limits_\Omega f(u(x), \nabla u(x)) \, dx ,$$
where $\Omega$ — a bounded domain in $\mathbb{R}^n \; (n \geqslant 2)$, an integrand $f(t,p) \, (t \in [0, \infty),\; p \in \mathbb{R}^n)$ – a function that is $B$-measurable with respect to a variable $t$ and is convex and even in the variable $p$, $\nabla u(x)$ — a gradient (in the sense of Sobolev) of the function $u \colon \Omega \rightarrow \mathbb{R}$. In the first and the second sections we utilize properties of permutations of differentiable functions and an isoperimetric inequality $H^{n-1}( \partial A) \geqslant \lambda(m_n A)$, that connects $(n-1)$-dimensional Hausdorff measure $H^{n-1}(\partial A )$ of relative boundary $\partial A$ of the set $A \subset \Omega$ with its $n$-dimensional Lebesgue measure $m_n A$. The integrand $f$ is assumed to be isotropic, i.e. $f(t,p) = f(t,q)$ if $|p| = |q|$. Applications of the established results to multidimensional variational problems are outlined. For functions $ u $ that vanish on the boundary of the domain $\Omega$, the assumption of the isotropy of the integrand $ f $ can be omitted. In this case, an important role is played by the Steiner and Schwartz symmetrization operations of the integrand $ f $ and of the function $ u $. The corresponding variants of the lower estimates are discussed in the third section. What is fundamentally new here is that the symmetrization operation is applied not only to the function $u$, but also to the integrand $f$. The geometric basis of the results of the third section is the Brunn-Minkowski inequality, as well as the symmetrization properties of the algebraic sum of sets.
Keywords: permutation, convex function, measure, gradient, symmetrization, isoperimetric inequality.
Received: 03.01.2018
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: V. S. Klimov, “Isoperimetric and functional inequalities”, Model. Anal. Inform. Sist., 25:3 (2018), 331–342
Citation in format AMSBIB
\Bibitem{Kli18}
\by V.~S.~Klimov
\paper Isoperimetric and functional inequalities
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 3
\pages 331--342
\mathnet{http://mi.mathnet.ru/mais632}
\crossref{https://doi.org/10.18255/1818-1015-2018-3-331-342}
\elib{https://elibrary.ru/item.asp?id=35144415}
Linking options:
  • https://www.mathnet.ru/eng/mais632
  • https://www.mathnet.ru/eng/mais/v25/i3/p331
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024