Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2018, Volume 25, Number 3, Pages 323–330
DOI: https://doi.org/10.18255/1818-1015-2018-3-323-330
(Mi mais631)
 

This article is cited in 1 scientific paper (total in 1 paper)

Function Theory

On the Taylor differentiability in spaces $L_p, 0<p\leq \infty$

A. N. Morozov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russia
Full-text PDF (627 kB) Citations (1)
References:
Abstract: The function $f\in L_p[I], \;p>0,$ is called $(k,p)$-differentiable at a point $x_0\in I$ if there exists an algebraic polynomial of $\pi$ of degree no more than $k$ for which holds $ \Vert f-\pi \Vert_{L_p[J_h]} = o(h^{k+\frac{1}{p}}), $ where $\;J_h=[x_0-h; x_0+h]\cap I.$ At an internal point for $k=1$ and $p=\infty$ this is equivalent to the usual definition of the function differentiability. At an interior point for $k=1$ and $p=\infty$, the definition is equivalent to the usual differentiability of the function. There is a standard "hierarchy" for the existence of differentials(if $p_1<p_2,$ then $(k,p_2)$-differentiability should be $(k,p_1)$-differentiability.) In the works of S.N. Bernstein, A.P. Calderon and A. Zygmund were given applications of such a construction to build a description of functional spaces ($p=\infty$) and the study of local properties of solutions of differential equations $(1\le p\le\infty)$, respectively. This article is related to the first mentioned work. The article introduces the concept of uniform differentiability. We say that a function $f$, $(k,p)$-differentiable at all points of the segment $I$, is uniformly $(k,p)$-differentiable on $I$ if for any number $\varepsilon>0$ there is a number $\delta>0$ such that for each point $x\in I$ runs $ \Vert f-\pi\Vert_{L_p[J_h]}<\varepsilon\cdot h^{k+\frac{1}{p}} \; $ for $0<h<\delta, \; J_h = [x\!-\!H; x\!+\!h]\cap I,$ where $\pi$ is the polynomial of the terms of the $(k, p)$-differentiability at the point $x$. Based on the methods of local approximations of functions by algebraic polynomials it is shown that a uniform $(k,p)$-differentiability of the function $f$ at some $1\le p\le\infty$ implies $f\in C^k[I].$ Therefore, in this case the differentials are "equivalent". Since every function from $C^k[I]$ is uniformly $(k,p)$-differentiable on the interval $I$ at $1\le p\le\infty,$ we obtain a certain criterion of belonging to this space. The range $0<p<1,$ obviously, can be included into the necessary condition the membership of the function $C^k[I]$, but the sufficiency of Taylor differentiability in this range has not yet been fully proven.
Keywords: Taylor differentiability of function, local approximations of functions.
Received: 15.01.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. N. Morozov, “On the Taylor differentiability in spaces $L_p, 0<p\leq \infty$”, Model. Anal. Inform. Sist., 25:3 (2018), 323–330
Citation in format AMSBIB
\Bibitem{Mor18}
\by A.~N.~Morozov
\paper On the Taylor differentiability in spaces $L_p, 0<p\leq \infty$
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 3
\pages 323--330
\mathnet{http://mi.mathnet.ru/mais631}
\crossref{https://doi.org/10.18255/1818-1015-2018-3-323-330}
\elib{https://elibrary.ru/item.asp?id=35144414}
Linking options:
  • https://www.mathnet.ru/eng/mais631
  • https://www.mathnet.ru/eng/mais/v25/i3/p323
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024