Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2018, Volume 25, Number 3, Pages 312–322
DOI: https://doi.org/10.18255/1818-1015-2018-3-312-322
(Mi mais630)
 

Computational Geometry

On the Hodge, Tate and Mumford–Tate conjectures for fibre products of families of regular surfaces with geometric genus 1

O. V. Oreshkina (Nikol'skaya)

A.G. and N.G. Stoletov Vladimir State University, 87 Gorky str., Vladimir, 600000, Russia
References:
Abstract: The Hodge, Tate and Mumford–Tate conjectures are proved for the fibre product of two non-isotrivial 1-parameter families of regular surfaces with geometric genus 1 under some conditions on degenerated fibres, the ranks of the Néron–Severi groups of generic geometric fibres and representations of Hodge groups in transcendental parts of rational cohomology.
Let $\pi_i:X_i\to C\quad (i = 1, 2)$ be a projective non-isotrivial family (possibly with degeneracies) over a smooth projective curve $C$. Assume that the discriminant loci $\Delta_i=\{\delta\in C \vert \mathrm{Sing}(X_{i\delta})\neq\varnothing\} \quad (i = 1, 2)$ are disjoint, $h^{2,0}(X_{ks})=1,\quad h^{1,0}(X_{ks}) = 0$ for any smooth fibre $X_{ks}$, and the following conditions hold:
$(i)$ for any point $\delta \in \Delta_i$ and the Picard–Lefschetz transformation $ \gamma \in \mathrm{GL}(H^2 (X_{is}, \mathbb{Q})) $, associated with a smooth part $\pi'_i: X'_i\to C\setminus\Delta_i$ of the morphism $\pi_i$ and with a loop around the point $\delta \in C$, we have $(\log(\gamma))^2\neq0$;
$(ii)$ the variety $X_i (i = 1, 2)$, the curve $C$ and the structure morphisms $\pi_i:X_i\to C$ are defined over a finitely generated subfield $k \hookrightarrow \mathbb{C}$.
If for generic geometric fibres $X_{1s}$ and $X_{2s}$ at least one of the following conditions holds:
$(a)$ $b_2(X_{1s})-{\mathrm{rank}}\, {\mathrm{NS}}(X_{1s})$ is an odd prime number, $\quad $ $b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq b_2(X_{2s})-{\mathrm{rank}} \,{\mathrm{NS}}(X_{2s})$;
$(b)$ the ring ${\mathrm{End}}_{\mathrm{Hg}(X_{1s})} {\mathrm{NS}}_{\mathbb{Q}}(X_{1s})^\perp$ is an imaginary quadratic field, $\quad b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq 4$,
${\mathrm{End}}_{\mathrm{Hg}(X_{2s})} {\mathrm{NS}}_{\mathbb{Q}}(X_{2s})^\perp$ is a totally real field or $b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s}) > b_2(X_{2s})-{\mathrm{rank}}\, {\mathrm{NS}}(X_{2s})$;
$(c)$ $[b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq 4, {\mathrm{End}}_{\mathrm{Hg}(X_{1s})} {\mathrm{NS}}_{\mathbb{Q}}(X_{1s})^\perp= \mathbb{Q}$; $b_2(X_{1s})-{\mathrm{rank}}\,{\mathrm{NS}}(X_{1s})\neq b_2(X_{2s})-{\mathrm{rank}} \,{\mathrm{NS}}(X_{2s})$, then for the fibre product $X_1 \times_C X_2$ the Hodge conjecture is true, for any smooth projective $k$-variety $X_0$ with the condition $X_1 \times_C X_2$ $\widetilde{\rightarrow}$ $X_0 \otimes_k \mathbb{C}$ the Tate conjecture on algebraic cycles and the Mumford–Tate conjecture for cohomology of even degree are true.
Keywords: Hodge, Tate and Mumford–Tate conjectures, fibre product, Mumford–Tate group, $l$-adic representation.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-00266_мол_а
This work was supported by the Russian Foundation for Basic Research under the Grant No 16-31-00266.
Received: 24.12.2017
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: O. V. Oreshkina (Nikol'skaya), “On the Hodge, Tate and Mumford–Tate conjectures for fibre products of families of regular surfaces with geometric genus 1”, Model. Anal. Inform. Sist., 25:3 (2018), 312–322
Citation in format AMSBIB
\Bibitem{Ore18}
\by O.~V.~Oreshkina (Nikol'skaya)
\paper On the Hodge, Tate and Mumford--Tate conjectures for fibre products of families of regular surfaces with geometric genus~1
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 3
\pages 312--322
\mathnet{http://mi.mathnet.ru/mais630}
\crossref{https://doi.org/10.18255/1818-1015-2018-3-312-322}
\elib{https://elibrary.ru/item.asp?id=35144413}
Linking options:
  • https://www.mathnet.ru/eng/mais630
  • https://www.mathnet.ru/eng/mais/v25/i3/p312
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024