Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2018, Volume 25, Number 3, Pages 291–311
DOI: https://doi.org/10.18255/1818-1015-2018-3-291-311
(Mi mais629)
 

This article is cited in 12 scientific papers (total in 12 papers)

Computational Geometry

On optimal interpolation by linear functions on an $n$-dimensional cube

M. V. Nevskii, A. Yu. Ukhalov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation
References:
Abstract: Let $n\in{\mathbb N}$, and let $Q_n$ be the unit cube $[0,1]^n$. By $C(Q_n)$ we denote the space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max\limits_{x\in Q_n}|f(x)|,$ by $\Pi_1\left({\mathbb R}^n\right)$ — the set of polynomials of $n$ variables of degree $\leq 1$ (or linear functions). Let $x^{(j)},$ $1\leq j\leq n+1,$ be the vertices of $n$-dimnsional nondegenerate simplex $S\subset Q_n$. An interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ corresponding to the simplex $S$ is defined by equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right)$. The norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$ may be calculated by the formula $\|P\|=\max\limits_{x\in\mathrm{ver}(Q_n)} \sum\limits_{j=1}^{n+1} |\lambda_j(x)|$. Here $\lambda_j$ are the basic Lagrange polynomials with respect to $S,$ $\mathrm{ver}(Q_n)$ is the set of vertices of $Q_n$. Let us denote by $\theta_n$ the minimal possible value of $\|P\|$. Earlier, the first author proved various relations and estimates for values $\|P\|$ and $\theta_n$, in particular, having geometric character. The equivalence $\theta_n\asymp \sqrt{n}$ takes place. For example, the appropriate, according to dimension $n$, inequalities may be written in the form $\frac{1}{4}\sqrt{n}$ $<\theta_n$ $<3\sqrt{n}$. If the nodes of the projector $P^*$ coincide with vertices of an arbitrary simplex with maximum possible volume, we have $\|P^*\|\asymp\theta_n$. When an Hadamard matrix of order $n+1$ exists, holds $\theta_n\leq\sqrt{n+1}$. In the paper, we give more precise upper bounds of numbers $\theta_n$ for $21\leq n \leq 26$. These estimates were obtained with the application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements $\pm 1$. Also, we systematize and comment the best nowaday upper and low estimates of numbers $\theta_n$ for a concrete $n$.
Keywords: $n$-dimensional simplex, $n$-dimensional cube, interpolation, projector, norm, numerical methods.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.12873.2018/12.1
This work was carried out within the framework of the state programme of the Ministry of Education and Science of the Russian Federation, project № 1.12873.2018/12.1.
Received: 11.12.2017
English version:
Automatic Control and Computer Sciences, 2018, Volume 52, Issue 7, Pages 828–842
DOI: https://doi.org/10.3103%2FS0146411618070283
Bibliographic databases:
Document Type: Article
UDC: 514.17+517.51+519.6
Language: Russian
Citation: M. V. Nevskii, A. Yu. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Model. Anal. Inform. Sist., 25:3 (2018), 291–311; Automatic Control and Computer Sciences, 52:7 (2018), 828–842
Citation in format AMSBIB
\Bibitem{NevUkh18}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On optimal interpolation by linear functions on an $n$-dimensional cube
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 3
\pages 291--311
\mathnet{http://mi.mathnet.ru/mais629}
\crossref{https://doi.org/10.18255/1818-1015-2018-3-291-311}
\elib{https://elibrary.ru/item.asp?id=35144412}
\transl
\jour Automatic Control and Computer Sciences
\yr 2018
\vol 52
\issue 7
\pages 828--842
\crossref{https://doi.org/10.3103%2FS0146411618070283}
Linking options:
  • https://www.mathnet.ru/eng/mais629
  • https://www.mathnet.ru/eng/mais/v25/i3/p291
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024