Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2018, Volume 25, Number 1, Pages 140–150
DOI: https://doi.org/10.18255/1818-1015-2018-1-140-150
(Mi mais617)
 

This article is cited in 4 scientific papers (total in 4 papers)

Computational Geometry

On minimal absorption index for an $n$-dimensional simplex

M. V. Nevskii, A. Yu. Ukhalov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation
Full-text PDF (655 kB) Citations (4)
References:
Abstract: Let $n\in{\mathbb N}$ and let $Q_n$ be the unit cube $[0,1]^n$. For a nondegenerate simplex $S\subset{\mathbb R}^n$, by $\sigma S$ denote the homothetic copy of $S$ with center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma.$ Put $\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\}.$ We call $\xi(S)$ an absorption index of simplex $S$. In the present paper, we give new estimates for the minimal absorption index of the simplex contained in $Q_n$, i. e., for the number $\xi_n=\min \{ \xi(S): \, S\subset Q_n \}.$ In particular, this value and its analogues have applications in estimates for the norms of interpolation projectors. Previously the first author proved some general estimates of $\xi_n$. Always $n\leq\xi_n< n+1$. If there exists an Hadamard matrix of order $n+1$, then $\xi_n=n$. The best known general upper estimate has the form $\xi_n\leq \frac{n^2-3}{n-1}$ $(n>2)$. There exists a constant $c>0$ not depending on $n$ such that, for any simplex $S\subset Q_n$ of maximum volume, inequalities $c\xi(S)\leq \xi_n\leq \xi(S)$ take place. It motivates the use of maximum volume simplices in upper estimates of $\xi_n$. The set of vertices of such a simplex can be consructed with application of maximum $0/1$-determinant of order $n$ or maximum $-1/1$-determinant of order $n+1$. In the paper, we compute absorption indices of maximum volume simplices in $Q_n$ constructed from known maximum $-1/1$-determinants via a special procedure. For some $n$, this approach makes it possible to lower theoretical upper bounds of $\xi_n$. Also we give best known upper estimates of $\xi_n$ for $n\leq 118$.
Keywords: $n$-dimensional simplex, $n$-dimensional cube, homothety, absorption index, interpolation, numerical methods.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.10160.2017/5.1
This work was carried out within the framework of the state programme of the Ministry of Education and Science of the Russian Federation, project № 1.10160.2017/5.1.
Received: 20.07.2017
Bibliographic databases:
Document Type: Article
UDC: 514.17+517.51+519.6
Language: Russian
Citation: M. V. Nevskii, A. Yu. Ukhalov, “On minimal absorption index for an $n$-dimensional simplex”, Model. Anal. Inform. Sist., 25:1 (2018), 140–150
Citation in format AMSBIB
\Bibitem{NevUkh18}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On minimal absorption index for an $n$-dimensional simplex
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 1
\pages 140--150
\mathnet{http://mi.mathnet.ru/mais617}
\crossref{https://doi.org/10.18255/1818-1015-2018-1-140-150}
\elib{https://elibrary.ru/item.asp?id=32482547}
Linking options:
  • https://www.mathnet.ru/eng/mais617
  • https://www.mathnet.ru/eng/mais/v25/i1/p140
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024