|
Modelirovanie i Analiz Informatsionnykh Sistem, 2009, Volume 16, Number 3, Pages 14–21
(Mi mais59)
|
|
|
|
Homogeneous and $\overline0$-homogeneous supermanifolds with retract $\mathbb{CP}^{1|4}_{kk20}$ when $k\ge 2$
M. A. Bashkin Rybinsk State Aviation Technological Academy
Abstract:
This paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature $(k,k,2,0),$ where $k\ge 2$. We prove that there are no non-split homogeneous supermanifolds in this case. See [3] and [4] for more information about the complex supermanifolds theory.
Keywords:
complex supermanifold, homogeneous complex supermanifold, retract, tangent sheaf.
Received: 25.05.2009
Citation:
M. A. Bashkin, “Homogeneous and $\overline0$-homogeneous supermanifolds with retract $\mathbb{CP}^{1|4}_{kk20}$ when $k\ge 2$”, Model. Anal. Inform. Sist., 16:3 (2009), 14–21
Linking options:
https://www.mathnet.ru/eng/mais59 https://www.mathnet.ru/eng/mais/v16/i3/p14
|
|