Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2017, Volume 24, Number 5, Pages 578–595
DOI: https://doi.org/10.18255/1818-1015-2017-5-578-595
(Mi mais585)
 

This article is cited in 5 scientific papers (total in 5 papers)

On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$

M. V. Nevskii, A. Yu. Ukhalov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
Full-text PDF (806 kB) Citations (5)
References:
Abstract: Let $n\in{\mathbb N}$, $Q_n=[0,1]^n.$ For a nondegenerate simplex $S\subset {\mathbb R}^n$, by $\sigma S$ we denote the homothetic image of $S$ with the center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma$. By $d_i(S)$ we mean the $i$-th axial diameter of $S$, i. e. the maximum length of a line segment in $S$ parallel to the $i$th coordinate axis. Let $\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\},$ $\xi_n=\min \{ \xi(S): \, S\subset Q_n \}.$ By $\alpha(S)$ we denote the minimal $\sigma>0$ such that $Q_n$ is contained in a translate of simplex $\sigma S$. Consider $(n+1)\times(n+1)$-matrix $\mathbf{A}$ with the rows containing coordinates of vertices of $S$; the last column of $\mathbf{A}$ consists of 1's. Put $\mathbf{A}^{-1}$ $=(l_{ij})$. Denote by $\lambda_j$ a linear function on ${\mathbb R}^n$ with coefficients from the $j$-th column of $\mathbf{A}^{-1}$, i. e. $\lambda_j(x)= l_{1j}x_1+\ldots+ l_{nj}x_n+l_{n+1,j}.$ Earlier, the first author proved the equalities $ \frac{1}{d_i(S)}=\frac{1}{2}\sum_{j=1}^{n+1} \left|l_{ij}\right|, \ \alpha(S) =\sum_{i=1}^n\frac{1}{d_i(S)}.$ In the present paper, we consider the case $S\subset Q_n$. Then all the $d_i(S)\leq 1$, therefore, $n\leq \alpha(S)\leq \xi(S).$ If for some simplex $S^\prime\subset Q_n$ holds $\xi(S^\prime)=n,$ then $\xi_n=n$, $\xi(S^\prime)=\alpha(S^\prime)$, and $d_i(S^\prime)=1$. However, such simplices $S^\prime$ do not exist for all the dimensions $n$. The first value of $n$ with such a property is equal to $2$. For each 2-dimensional simplex, $\xi(S)\geq \xi_2=1+\frac{3\sqrt{5}}{5}=2.34 \ldots>2$. We have an estimate $n\leq \xi_n<n+1$. The equality $\xi_n=n$ takes place if there exists an Hadamard matrix of order $n+1$. Further study showed that $\xi_n=n$ also for some other $n$. In particular, simplices with the condition $S\subset Q_n\subset nS$ were built for any odd $n$ in the interval $1\leq n\leq 11$. In the first part of the paper, we present some new results concerning simplices with such a condition. If $S\subset Q_n\subset nS$, the center of gravity of $S$ coincide, with the center of $Q_n$. We prove that $\sum_{j=1}^{n+1} |l_{ij}|=2 \quad (1\leq i\leq n), \ \sum_{i=1}^{n} |l_{ij}|=\frac{2n}{n+1} \ (1\leq j\leq n+1).$ Also we give some corollaries. In the second part of the paper, we consider the following conjecture. Let for simplex $S\subset Q_n$ an equality $\xi(S)=\xi_n$ holds. Then $(n-1)$-dimensional hyperplanes containing the faces of $S$ cut from the cube $Q_n$ the equal-sized parts. Though it is true for $n=2$ and $n=3$, in the general case this conjecture is not valid.
Keywords: $n$-dimensional simplex, $n$-dimensional cube, homothety, axial diameter, interpolation, projection, numerical methods.
Funding agency Grant number
The work was supported by the initiative research of Yaroslavl State University VIP-008.
Received: 10.02.2017
English version:
Automatic Control and Computer Sciences, 2018, Volume 52, Issue 7, Pages 667–679
DOI: https://doi.org/10.3103/S0146411618070192
Bibliographic databases:
Document Type: Article
UDC: 514.17+517.51+519.6
Language: Russian
Citation: M. V. Nevskii, A. Yu. Ukhalov, “On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$”, Model. Anal. Inform. Sist., 24:5 (2017), 578–595; Automatic Control and Computer Sciences, 52:7 (2018), 667–679
Citation in format AMSBIB
\Bibitem{NevUkh17}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 5
\pages 578--595
\mathnet{http://mi.mathnet.ru/mais585}
\crossref{https://doi.org/10.18255/1818-1015-2017-5-578-595}
\elib{https://elibrary.ru/item.asp?id=30353169}
\transl
\jour Automatic Control and Computer Sciences
\yr 2018
\vol 52
\issue 7
\pages 667--679
\crossref{https://doi.org/10.3103/S0146411618070192}
Linking options:
  • https://www.mathnet.ru/eng/mais585
  • https://www.mathnet.ru/eng/mais/v24/i5/p578
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :185
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024