Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2017, Volume 24, Number 5, Pages 567–577
DOI: https://doi.org/10.18255/1818-1015-2017-5-567-577
(Mi mais584)
 

On locally convex curves

V. S. Klimov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
References:
Abstract: We introduce the definition of locally convex curves and establish some properties of such curves. In the section 1, we consider the curve $K$ allowing the parametric representation $x = u(t),\, y = v(t), \, (a \leqslant t \leqslant b)$, where $u(t)$, $v(t)$ are continuously differentiable on $[a,b]$ functions such that $|u'(t)| + |v'(t)| > 0 \,\forall t \in [a,b]$. A continuous on $[a,b]$ function $\theta(t)$ is called the angle function of the curve $K$ if the following conditions hold: $u'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}\, \cos \theta(t), \quad v'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}\, \sin \theta(t)$. The curve $K$ is called locally convex if its angle function $\theta(t)$ is strictly monotonous on $[a,b]$. For a closed curve $K$ the number $deg K= \cfrac{\theta(b)- \theta(a)}{2 \pi}$ is whole. This number is equal to the number of rotations that the speed vector $(u'(t),v'(t))$ performs around the origin. The main result of the first section is the statement: if the curve $K$ is locally convex, then for any straight line $G$ the number $N(K;G)$ of intersections of $K$ and $G$ is finite and the estimate $N(K;G) \leqslant 2 |deg K|$ holds. We discuss versions of this estimate for closed and non-closed curves. In the sections 2 and 3, we consider curves arising in the investigation of a linear homogeneous differential equation of the form $L(x) \equiv x^{(n)} + p_1(t) x^{(n-1)} + \cdots p_n(t) x = 0 $ with locally summable coefficients $p_i(t)\, (i = 1, \cdots,n)$. We demonstrate how conditions of disconjugacy of the differential operator $L$ that were established in works of G. A. Bessmertnyh and A. Yu. Levin, can be applied.
Keywords: regular curve, corner function, degree, straight line, differential equation, polyline.
Received: 27.02.2017
Bibliographic databases:
Document Type: Article
UDC: 513.7
Language: Russian
Citation: V. S. Klimov, “On locally convex curves”, Model. Anal. Inform. Sist., 24:5 (2017), 567–577
Citation in format AMSBIB
\Bibitem{Kli17}
\by V.~S.~Klimov
\paper On locally convex curves
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 5
\pages 567--577
\mathnet{http://mi.mathnet.ru/mais584}
\crossref{https://doi.org/10.18255/1818-1015-2017-5-567-577}
\elib{https://elibrary.ru/item.asp?id=30353168}
Linking options:
  • https://www.mathnet.ru/eng/mais584
  • https://www.mathnet.ru/eng/mais/v24/i5/p567
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024