Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2017, Volume 24, Number 2, Pages 205–214
DOI: https://doi.org/10.18255/1818-1015-2017-2-205-214
(Mi mais558)
 

On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic

T. V. Prokhorova

A. G. and N. G. Stoletov Vladimir State University, 87 Gorky str., Vladimir 600000, Russia
References:
Abstract: We investigate interrelations between the Tate conjecture for divisors on a fibred variety over a finite field and the Tate conjecture for divisors on the generic scheme fibre under the condition that the generic scheme fibre has zero irregularity. Let $\pi:X\to C$ be a surjective morphism of smooth projective varieties over a finite field $\mathbb{F}_q$ of characteristic $p$, $C$ is a curve and the generic scheme fibre of $\pi$ is a smooth variety $V$ over the field $k=\kappa(C)$ of rational functions of the curve $C$, $\overline k$ is an algebraic closure of the field $k$, $k^s$ is its separable closure, $\operatorname{NS}(V)$ is the Néron–Severi group of classes of divisors on the variety $V$ modulo algebraic equivalence, and assume that the following conditions hold: $H^1(V\otimes\overline k,\mathcal O_{V\otimes\,\overline k})=0$, $\operatorname{NS}(V)=\operatorname{NS}(V\otimes\overline k)$. If, for a prime number $l$ not dividing ${\operatorname{Card}}([\operatorname{NS}(V)]_{\operatorname{tors}})$ and different from the characteristic of the field $\mathbb{F}_q$, the following relation holds $\operatorname{NS}(V)\otimes\mathbb{Q}_l\,\,\widetilde{\rightarrow}\,\,[H^2(V\otimes k^{\operatorname{s}},\mathbb{Q}_l(1))]^{\operatorname{Gal}( k^{\operatorname{s}}/k)} $ (in other words, if the Tate conjecture for divisors on $V$ holds), then for any prime number $l\neq\operatorname{char}(\mathbb{F}_q)$ the Tate conjecture holds for divisors on $X$: $\operatorname{NS}(X)\otimes\mathbb{Q}_l\,\,\widetilde{\rightarrow} \,\,[H^2(X\otimes\overline{\mathbb{F}}_q,\mathbb{Q}_l(1))]^{\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)}$. In particular, it follows from this result that the Tate conjecture for divisors on an arithmetic model of a $\operatorname{K}3$ surface over a sufficiently large global field of finite characteristic different from $2$ holds as well.
Keywords: Tate conjecture, global field, Brauer group, arithmetic model, $\operatorname{K}3$ surface.
Received: 12.12.2016
Bibliographic databases:
Document Type: Article
UDC: 512.71
Language: Russian
Citation: T. V. Prokhorova, “On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic”, Model. Anal. Inform. Sist., 24:2 (2017), 205–214
Citation in format AMSBIB
\Bibitem{Pro17}
\by T.~V.~Prokhorova
\paper On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 2
\pages 205--214
\mathnet{http://mi.mathnet.ru/mais558}
\crossref{https://doi.org/10.18255/1818-1015-2017-2-205-214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3650215}
\elib{https://elibrary.ru/item.asp?id=29064002}
Linking options:
  • https://www.mathnet.ru/eng/mais558
  • https://www.mathnet.ru/eng/mais/v24/i2/p205
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :81
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024