Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2016, Volume 23, Number 5, Pages 595–602
DOI: https://doi.org/10.18255/1818-1015-2016-5-595-602
(Mi mais526)
 

Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function

E. A. Timofeev

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
References:
Abstract: Recall the Lebesgue's singular function. We define a Lebesgue's singular function $L(t)$ as the unique continuous solution of the functional equation
$$ L(t) = qL(2t) +pL(2t-1), $$
where $p,q>0$, $q=1-p$, $p\ne q$. The moments of Lebesque' singular function are defined as
$$ M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots $$
The main result of this paper is
$$ M_n = n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right), $$
where
\begin{gather*} \tau(x) = \frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.\mathrm{Li}_{z}\left(-\frac{q}{p}\right)\right|_{z=1} +\frac1{\ln 2}\sum_{k\ne0} \Gamma(z_k)\mathrm{Li}_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},\\ z_k = \frac{2\pi ik}{\ln 2}, \ k\ne 0. \end{gather*}
The proof is based on analytic techniques such as the poissonization and the Mellin transform.
Keywords: moments, self-similar, Lebesgue’s function, singular, Mellin transform, polylogarithm, asymptotic.
Received: 10.07.2016
English version:
Automatic Control and Computer Sciences, 2017, Volume 51, Issue 7, Pages 634–638
DOI: https://doi.org/10.3103/S0146411617070203
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. A. Timofeev, “Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function”, Model. Anal. Inform. Sist., 23:5 (2016), 595–602; Automatic Control and Computer Sciences, 51:7 (2017), 634–638
Citation in format AMSBIB
\Bibitem{Tim16}
\by E.~A.~Timofeev
\paper Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 5
\pages 595--602
\mathnet{http://mi.mathnet.ru/mais526}
\crossref{https://doi.org/10.18255/1818-1015-2016-5-595-602}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3569856}
\elib{https://elibrary.ru/item.asp?id=27202309}
\transl
\jour Automatic Control and Computer Sciences
\yr 2017
\vol 51
\issue 7
\pages 634--638
\crossref{https://doi.org/10.3103/S0146411617070203}
Linking options:
  • https://www.mathnet.ru/eng/mais526
  • https://www.mathnet.ru/eng/mais/v23/i5/p595
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìîäåëèðîâàíèå è àíàëèç èíôîðìàöèîííûõ ñèñòåì
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :108
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024