Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2016, Volume 23, Number 2, Pages 185–194
DOI: https://doi.org/10.18255/1818-1015-2016-2-185-194
(Mi mais490)
 

Asymptotic formula for the moments of Bernoulli convolutions

E. A. Timofeev

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
References:
Abstract: For each $\lambda$, $0<\lambda<1$, we define a random variable
$$ Y_\lambda = (1-\lambda)\sum_{n=0}^\infty \xi_n\lambda^n, $$
where $\xi_n$ are independent random variables with
$$ \mathrm{P}\{\xi_n =0\} =\mathrm{P}\{\xi_n =1\} =\frac12. $$
The distribution of $Y_\lambda$ is called a symmetric Bernoulli convolution. The main result of this paper is
$$ M_n = \mathrm{E} Y_\lambda^n = n^{\log_{\lambda}2} 2^{\log_\lambda(1-\lambda)+0.5\log_\lambda2-0.5} e^{\tau(-\log_{\lambda}n)}\left(1 + \mathcal{O}(n^{-0.99})\right), $$
where
$$ \tau(x)=\sum_{k\ne0}\frac1k\alpha\left(-\frac{k}{\ln\lambda}\right)e^{2\pi ikx} $$
is a 1-periodic function,
$$ \alpha(t) = -\frac{1}{2i\mathrm{sh}\,(\pi^2t)} (1-\lambda)^{2\pi i t}(1 - 2^{2\pi i t})\pi^{-2\pi i t }2^{-2\pi i t }\zeta(2\pi i t), $$
and $\zeta(z)$ is the Riemann zeta function.
The article is published in the author's wording.
Keywords: moments, self-similar, Bernoulli convolution, singular, Mellin transform, asymptotic.
Received: 08.02.2016
Bibliographic databases:
Document Type: Article
UDC: 519.987
Language: English
Citation: E. A. Timofeev, “Asymptotic formula for the moments of Bernoulli convolutions”, Model. Anal. Inform. Sist., 23:2 (2016), 185–194
Citation in format AMSBIB
\Bibitem{Tim16}
\by E.~A.~Timofeev
\paper Asymptotic formula for the moments of Bernoulli convolutions
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 2
\pages 185--194
\mathnet{http://mi.mathnet.ru/mais490}
\crossref{https://doi.org/10.18255/1818-1015-2016-2-185-194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504588}
\elib{https://elibrary.ru/item.asp?id=25810351}
Linking options:
  • https://www.mathnet.ru/eng/mais490
  • https://www.mathnet.ru/eng/mais/v23/i2/p185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :63
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024