Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2016, Volume 23, Number 1, Pages 61–85
DOI: https://doi.org/10.18255/1818-1015-2016-1-61-85
(Mi mais483)
 

Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points

S. A. Kashchenkoab

a P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
b National Engineering Physics Institute "MEPhI", Moscow
References:
Abstract: For a second order equation with a small factor at the highest derivative the asymptotic behavior of all eigenvalues of periodic and antiperiodic problems is studied. The main assumption is that the coefficient at the first derivative in the equation is the sign of the variable so that turning points exist an algorithm for computing all coefficients of asymptotic series for every considered eigenvalue is developed. It turns out that the values of these coefficients are defined by coefficient values of the original equation only in a neighborhood of turning points. Asymptotics for the length of Lyapunov zones of stability and instability was obtained. In particular, the problem of stability of solutions of second order equations with periodic coefficients and small parameter at the highest derivative was solved.
Keywords: singularly perturbed equation, turning points, asymptotic, boundary value problem, eigenvalues.
Received: 20.12.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. A. Kashchenko, “Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points”, Model. Anal. Inform. Sist., 23:1 (2016), 61–85
Citation in format AMSBIB
\Bibitem{Kas16}
\by S.~A.~Kashchenko
\paper Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 1
\pages 61--85
\mathnet{http://mi.mathnet.ru/mais483}
\crossref{https://doi.org/10.18255/1818-1015-2016-1-61-85}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3502275}
\elib{https://elibrary.ru/item.asp?id=25475542}
Linking options:
  • https://www.mathnet.ru/eng/mais483
  • https://www.mathnet.ru/eng/mais/v23/i1/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :106
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024