Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2015, Volume 22, Number 5, Pages 723–730
DOI: https://doi.org/10.18255/1818-1015-2015-5-723-730
(Mi mais469)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic formula for the moments of Lebesgue’s singular function

E. A. Timofeev

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
Full-text PDF (197 kB) Citations (1)
References:
Abstract: Recall Lebesgue's singular function. Imagine flipping a biased coin with probability $p$ of heads and probability $q=1-p$ of tails. Let the binary expansion of $\xi\in[0,1]$: $ \xi = \sum_{k=1}^{\infty}c_k2^{-k}$ be determined by flipping the coin infinitely many times, that is, $c_k =1$ if the $k$-th toss is heads and $c_k =0$ if it is tails. We define Lebesgue's singular function $L(t)$ as the distribution function of the random variable $\xi$:
$$ L(t) = Prob\{\xi < t\}. $$
It is well-known that $L(t)$ is strictly increasing and its derivative is zero almost everywhere ($p\ne q$). The moments of Lebesque' singular function are defined as
$$ M_n = \mathsf{E}\xi^n. $$
The main result of this paper is the following:
$$ M_n = O(n^{\log_2 p}). $$
Keywords: moments, self-similar, Lebesgue’s function, singular, Mellin transform, asymptotic.
Received: 10.07.2015
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. A. Timofeev, “Asymptotic formula for the moments of Lebesgue’s singular function”, Model. Anal. Inform. Sist., 22:5 (2015), 723–730
Citation in format AMSBIB
\Bibitem{Tim15}
\by E.~A.~Timofeev
\paper Asymptotic formula for the moments of Lebesgue’s singular function
\jour Model. Anal. Inform. Sist.
\yr 2015
\vol 22
\issue 5
\pages 723--730
\mathnet{http://mi.mathnet.ru/mais469}
\crossref{https://doi.org/10.18255/1818-1015-2015-5-723-730}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338940}
\elib{https://elibrary.ru/item.asp?id=25063580}
Linking options:
  • https://www.mathnet.ru/eng/mais469
  • https://www.mathnet.ru/eng/mais/v22/i5/p723
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ìîäåëèðîâàíèå è àíàëèç èíôîðìàöèîííûõ ñèñòåì
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :70
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024