Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2015, Volume 22, Number 5, Pages 595–608
DOI: https://doi.org/10.18255/1818-1015-2015-5-595-608
(Mi mais462)
 

This article is cited in 6 scientific papers (total in 6 papers)

Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos

V. N. Belykhab, M. I. Bolotova, G. V. Osipova

a Nizhny Novgorod University, Gagarin Ave., 23, Nizhny Novgorod, 603950, Russia
b Volga State University of Water Transport, Nesterova str., 5, Nizhny Novgorod, 603950, Russia
Full-text PDF (626 kB) Citations (6)
References:
Abstract: We consider a finite-dimensional model of phase oscillators with inertia in the case of star configuration of coupling. The system of equations is reduced to a nonlinearly coupled system of pendulum equations. We prove that the transition from synchronous to asynchronous oscillations occurs via bifurcation of saddle-node equilibrium. In this connection the asynchronous regime can be partially synchronous rotations. We find that the reverse transition from asynchronous to synchronous regime occurs via bifurcation of homoclinic orbit both of the saddle equilibrium point and of the saddle periodic orbit. In the case of homoclinic loop of the saddle point the synchrony appears only from asynchronous mode without partially synchronized rotations. In the case of the homoclinic curve of the saddle periodic orbit the system undergoes a chaotic rotation regime which results in a random return to synchrony. We establish that return transitions are hysteretic in the case of large inertia.
Keywords: oscillators, synchronization, pendulum, star.
Funding agency Grant number
Russian Science Foundation 14-12-00811
Russian Foundation for Basic Research 15-01-08776
This work was supported by the RSF (Project No. 14-12- 00811) (Sections 1,2) and by the RFBR (project 15-01-08776) (Section 3).
Received: 15.09.2015
Bibliographic databases:
Document Type: Article
UDC: 519.987
Language: English
Citation: V. N. Belykh, M. I. Bolotov, G. V. Osipov, “Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos”, Model. Anal. Inform. Sist., 22:5 (2015), 595–608
Citation in format AMSBIB
\Bibitem{BelBolOsi15}
\by V.~N.~Belykh, M.~I.~Bolotov, G.~V.~Osipov
\paper Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos
\jour Model. Anal. Inform. Sist.
\yr 2015
\vol 22
\issue 5
\pages 595--608
\mathnet{http://mi.mathnet.ru/mais462}
\crossref{https://doi.org/10.18255/1818-1015-2015-5-595-608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499140}
\elib{https://elibrary.ru/item.asp?id=25063573}
Linking options:
  • https://www.mathnet.ru/eng/mais462
  • https://www.mathnet.ru/eng/mais/v22/i5/p595
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:450
    Full-text PDF :233
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024