Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2015, Volume 22, Number 4, Pages 483–499
DOI: https://doi.org/10.18255/1818-1015-2015-4-483-499
(Mi mais454)
 

This article is cited in 1 scientific paper (total in 1 paper)

On finite groups with an irreducible character large degree

L. S. Kazarin, S. S. Poiseeva

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
Full-text PDF (627 kB) Citations (1)
References:
Abstract: Let $G$ be a finite nontrivial group with an irreducible complex character $\chi$ of degree $d=\chi(1)$. It is known from the orthogonality relation that the sum of the squares of degrees of irreducible characters of $G$ is equal to the order of $G$. N. Snyder proved that if $|G|=d(d+e)$, then the order of $G$ is bounded in terms of $e$, provided $e>1$. Y. Berkovich proved that in the case $e=1$ the group $G$ is Frobenius with the complement of order $d$. We study a finite nontrivial group $G$ with an irreducible complex character $\Theta$ such that $|G|\leq2\Theta(1)^2$ and $\Theta(1)=pq$, where $p$ and $q$ are different primes. In this case we prove that $G$ is solvable groups with abelian normal subgroup $K$ of index $pq$. We use the classification of finite simple groups and prove that the simple nonabelian group whose order is divisible by a prime $p$ and of order less than $2p^4 $ is isomorphic to $L_2(q), L_3(q), U_3(q), Sz(8), A_7, M_{11}$ or $J_1$.
Keywords: finite group, character of a finite group, irreducible character degree of a finite group.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00469
Received: 06.07.2015
Bibliographic databases:
Document Type: Article
UDC: 512.547.214
Language: Russian
Citation: L. S. Kazarin, S. S. Poiseeva, “On finite groups with an irreducible character large degree”, Model. Anal. Inform. Sist., 22:4 (2015), 483–499
Citation in format AMSBIB
\Bibitem{KazPoi15}
\by L.~S.~Kazarin, S.~S.~Poiseeva
\paper On finite groups with an irreducible character large degree
\jour Model. Anal. Inform. Sist.
\yr 2015
\vol 22
\issue 4
\pages 483--499
\mathnet{http://mi.mathnet.ru/mais454}
\crossref{https://doi.org/10.18255/1818-1015-2015-4-483-499}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3418468}
\elib{https://elibrary.ru/item.asp?id=24273049}
Linking options:
  • https://www.mathnet.ru/eng/mais454
  • https://www.mathnet.ru/eng/mais/v22/i4/p483
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:431
    Full-text PDF :144
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024