Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2015, Volume 22, Number 4, Pages 453–463
DOI: https://doi.org/10.18255/1818-1015-2015-4-453-463
(Mi mais452)
 

This article is cited in 3 scientific papers (total in 3 papers)

1-Skeletons of the spanning tree problems with additional constraints

V. A. Bondarenko, A. V. Nikolaev, D. A. Shovgenov

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
Full-text PDF (192 kB) Citations (3)
References:
Abstract: In this paper, we study polyhedral properties of two spanning tree problems with additional constraints. In the first problem, it is required to find a tree with a minimum sum of edge weights among all spanning trees with the number of leaves less than or equal to a given value. In the second problem, an additional constraint is the assumption that the degree of all nodes of the spanning tree does not exceed a given value. The recognition versions of both problems are NP-complete. We consider polytopes of these problems and their 1-skeletons. We prove that in both cases it is a NP-complete problem to determine whether the vertices of 1-skeleton are adjacent. Although it is possible to obtain a superpolynomial lower bounds on the clique numbers of these graphs. These values characterize the time complexity in a broad class of algorithms based on linear comparisons. The results indicate a fundamental difference between combinatorial and geometric properties of the considered problems from the classical minimum spanning tree problem.
Keywords: spanning tree, 1-skeleton, clique number, NP-complete problem, hamiltonian chain.
Received: 30.07.2015
Bibliographic databases:
Document Type: Article
UDC: 519.16+514.172.45
Language: Russian
Citation: V. A. Bondarenko, A. V. Nikolaev, D. A. Shovgenov, “1-Skeletons of the spanning tree problems with additional constraints”, Model. Anal. Inform. Sist., 22:4 (2015), 453–463
Citation in format AMSBIB
\Bibitem{BonNikSho15}
\by V.~A.~Bondarenko, A.~V.~Nikolaev, D.~A.~Shovgenov
\paper 1-Skeletons of the spanning tree problems with additional constraints
\jour Model. Anal. Inform. Sist.
\yr 2015
\vol 22
\issue 4
\pages 453--463
\mathnet{http://mi.mathnet.ru/mais452}
\crossref{https://doi.org/10.18255/1818-1015-2015-4-453-463}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3418466}
\elib{https://elibrary.ru/item.asp?id=24273047}
Linking options:
  • https://www.mathnet.ru/eng/mais452
  • https://www.mathnet.ru/eng/mais/v22/i4/p453
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024