Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2015, Volume 22, Number 1, Pages 127–143 (Mi mais425)  

On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions

K. Tukhliev

Khujand State University, Mavlonbekova, 1, Khujand, 735700, Tajikistan
References:
Abstract: The sharp Jackson–Stechkin inequalities are received, in which a special module of continuity $\widetilde{\Omega}_{m}(f; t)$ determined by Steklov's function is used instead the usual modulus of continuity of $m$th order $\omega_{m}(f; t)$. Such generalized modulus of continuity of $m$th order were introduced by V. A. Abilov and F. V. Abilova. The introduced modulus of continuity found their application in the theory of polynomial approximation in Hilbert space in the works by M. Sh. Shabozov and G. A. Yusupov, S. B. Vakarchuk and V. I. Zabutnaya and others.
While continuing and developing these direction for some classes of functions defined by modulus of continuity, the new values of $n$-widths in the Hilbert space $L_{2}$ were found.
Keywords: best polynomial approximation, Steklov operator, modulus of continuity, generalized modulus of continuity, $n$-widths.
Received: 15.11.2013
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: K. Tukhliev, “On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions”, Model. Anal. Inform. Sist., 22:1 (2015), 127–143
Citation in format AMSBIB
\Bibitem{Tuk15}
\by K.~Tukhliev
\paper On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions
\jour Model. Anal. Inform. Sist.
\yr 2015
\vol 22
\issue 1
\pages 127--143
\mathnet{http://mi.mathnet.ru/mais425}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3417817}
\elib{https://elibrary.ru/item.asp?id=23237975}
Linking options:
  • https://www.mathnet.ru/eng/mais425
  • https://www.mathnet.ru/eng/mais/v22/i1/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025