Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2014, Volume 21, Number 4, Pages 47–53 (Mi mais386)  

Perfect Prismatoids are Lattice Delaunay Polytopes

M. A. Kozachok, A. N. Magazinov

Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina str. 8, Moscow, 119991, Russia
References:
Abstract: A perfect prismatoid is a convex polytope $P$ such that for every its facet $F$ there exists a supporting hyperplane $\alpha\parallel F$ such that any vertex of $P$ belongs to either $F$ or $\alpha$. Perfect prismatoids concern with Kalai conjecture, that any centrally symmetric $d$-polytope $P$ has at least $3^d$ non-empty faces and any polytope with exactly $3^d$ non-empty faces is a Hanner polytope. Any Hanner polytope is a perfect prismatoid (but not vice versa). A $0/1$-polytope is a convex hull of some vertices of the $d$-dimensional unit cube. We prove that every perfect prismatoid is affinely equivalent to some $0/1$-polytope of the same dimension. (And therefore every perfect prismatoid is a lattice polytope.) Let $\Lambda$ be a lattice in $\mathbb{R}^d$ and $D$ be a polytope inscribed in a sphere $B$. Denote a boundary of $B$ by $\partial B$ and an interior of $B$ by $int\, B$. The polytope D is a lattice Delaunay polytope if $\Lambda\cap int\, B=\varnothing$ and $D$ is a convex hull of $\Lambda\cap\partial B$. We prove that every perfect prismatoid is affinely equivalent to some lattice Delaunay polytope.
Keywords: polytopes, Delaunay polytopes, Kalai conjecture.
Funding agency Grant number
Russian Science Foundation 14-11-00414
Russian Foundation for Basic Research 13-01-00563
Received: 14.07.2014
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. A. Kozachok, A. N. Magazinov, “Perfect Prismatoids are Lattice Delaunay Polytopes”, Model. Anal. Inform. Sist., 21:4 (2014), 47–53
Citation in format AMSBIB
\Bibitem{KozMag14}
\by M.~A.~Kozachok, A.~N.~Magazinov
\paper Perfect Prismatoids are Lattice Delaunay Polytopes
\jour Model. Anal. Inform. Sist.
\yr 2014
\vol 21
\issue 4
\pages 47--53
\mathnet{http://mi.mathnet.ru/mais386}
\elib{https://elibrary.ru/item.asp?id=22363145}
Linking options:
  • https://www.mathnet.ru/eng/mais386
  • https://www.mathnet.ru/eng/mais/v21/i4/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :80
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024