Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2014, Volume 21, Number 3, Pages 81–90 (Mi mais378)  

This article is cited in 1 scientific paper (total in 1 paper)

Countable Additivity of Spreading the Differentiation Operator

A. N. Morozov

P. G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
Full-text PDF (417 kB) Citations (1)
References:
Abstract: In this article, we continue the study of the properties acquired by the differentiation operator $ \Lambda $ with spreading beyond the space $ W_1^1 $. The study is conducted by introducing the family of spaces $ Y_p^1$, $0 <p < 1$, having analogy with the family $ W_p^1$, $1 \le p <\infty.$ Spaces $ Y_p^1 $ are equiped with quasinorms constructed on quasinorms spaces $ L_p $ as the basis; $ \Lambda: Y_p^1 \mapsto L_p $. We have given a sufficient condition for a function, piecewise belonging to the space $ Y_p^1 $ to be in this space (if $ f \in Y_p^1 [x_{i-1}; x_i]$, $i \in N$, $0 = x_0 <x_1 < \cdots <x_i < \cdots < 1 $, then $ f\in Y_p^1[0;1] $). In other words, it is the sign when the equality: $ \Lambda (\bigcup f_i) = \bigcup \Lambda (f_i)$ is true. The bounded variation in the Jordan sense is closest to the sufficient condition among the classic characteristics of functions. As a corollary, it comes out that, if a function $ f $ piecewise belongs to the space of $ W_1^1 $ and has a bounded variation, $ f $ belongs to each space $ Y_p^1$, $0 <p < 1$.
Keywords: differentiation operator, quasinorm.
Received: 05.11.2013
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. N. Morozov, “Countable Additivity of Spreading the Differentiation Operator”, Model. Anal. Inform. Sist., 21:3 (2014), 81–90
Citation in format AMSBIB
\Bibitem{Mor14}
\by A.~N.~Morozov
\paper Countable Additivity of Spreading the Differentiation Operator
\jour Model. Anal. Inform. Sist.
\yr 2014
\vol 21
\issue 3
\pages 81--90
\mathnet{http://mi.mathnet.ru/mais378}
Linking options:
  • https://www.mathnet.ru/eng/mais378
  • https://www.mathnet.ru/eng/mais/v21/i3/p81
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :69
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024