Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2014, Volume 21, Number 2, Pages 90–96 (Mi mais373)  

Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$

A. S. Tikhomirov, M. A. Zavodchikov

Yaroslavl State Pedagogical University named after K. D. Ushinsky, Respublikanskaya st., 108, Yaroslavl, 150000, Russia
References:
Abstract: We prove the reducibility of the moduli space $M_{\mathbb{P}^3}^{\mathrm{ref}}(2;-1,4,2)$ of stable rank 2 reflexive sheaves with Chern classes $c_1=-1$, $c_2=4$, $c_3=2$ on projective space $\mathbb {P}^3$. This gives the first example of a reducible space in the series of moduli spaces of stable rank 2 reflexive sheaves with Chern classes $c_1=-1$, $c_2=4$, $c_3=2m$, $m=1,2,3,4,5,6,8$. We find two components of the expected dimension 27 of this space and give their geometric description via the Serre construction.
Keywords: moduli space, stable reflexive sheaf, Serre construction.
Received: 14.04.2014
Document Type: Article
UDC: 512.723
Language: Russian
Citation: A. S. Tikhomirov, M. A. Zavodchikov, “Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$”, Model. Anal. Inform. Sist., 21:2 (2014), 90–96
Citation in format AMSBIB
\Bibitem{TikZav14}
\by A.~S.~Tikhomirov, M.~A.~Zavodchikov
\paper Reducibility of the Moduli Space of Stable Rank $2$ Reflexive Sheaves with Chern Classes $c_1=-1$, $c_2=4$, $c_3=2$ on Projective Space $\mathbb{P}^3$
\jour Model. Anal. Inform. Sist.
\yr 2014
\vol 21
\issue 2
\pages 90--96
\mathnet{http://mi.mathnet.ru/mais373}
Linking options:
  • https://www.mathnet.ru/eng/mais373
  • https://www.mathnet.ru/eng/mais/v21/i2/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024