Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2013, Volume 20, Number 6, Pages 121–128 (Mi mais348)  

This article is cited in 1 scientific paper (total in 1 paper)

Subword Complexes and Nil-Hecke Moves

M. A. Gorskyabc

a Steklov Mathematical Institute, Gubkina str., 8, Moscow, 119991, Russia
b Université Paris Diderot – Paris 7
c Institut de Mathématiques de Jussieu – Paris Rive Gauche, Bât. Sophie Germain, 75205 Paris Cedex 13, France
Full-text PDF (457 kB) Citations (1)
References:
Abstract: For a finite Coxeter group $W$, a subword complex is a simplicial complex associated with a pair $(\mathbf{Q}, \rho),$ where $\mathbf{Q}$ is a word in the alphabet of simple reflections, $\rho$ is a group element. We describe the transformations of such a complex induced by nil-moves and inverse operations on $\mathbf{Q}$ in the nil-Hecke monoid corresponding to $W$. If the complex is polytopal, we also describe such transformations for the dual polytope. For $W$ simply-laced, these descriptions and results of [5] provide an algorithm for the construction of the subword complex corresponding to $(\mathbf{Q}, \rho)$ from the one corresponding to $(\delta(\mathbf{Q}), \rho),$ for any sequence of elementary moves reducing the word $\mathbf{Q}$ to its Demazure product $\delta(\mathbf{Q})$. The former complex is spherical or empty if and only if the latter one is empty.
The article is published in the author's wording.
Keywords: subword complexes, Coxeter groups, nil-Hecke monoids.
Funding agency Grant number
Le Reseau de Recherche Doctoral en Mathematiques de l'Ile de France
The work was supported by DIM RDM-IdF of the Région Île-de-France.
Received: 01.11.2013
Document Type: Article
UDC: 519.987
Language: English
Citation: M. A. Gorsky, “Subword Complexes and Nil-Hecke Moves”, Model. Anal. Inform. Sist., 20:6 (2013), 121–128
Citation in format AMSBIB
\Bibitem{Gor13}
\by M.~A.~Gorsky
\paper Subword Complexes and Nil-Hecke Moves
\jour Model. Anal. Inform. Sist.
\yr 2013
\vol 20
\issue 6
\pages 121--128
\mathnet{http://mi.mathnet.ru/mais348}
Linking options:
  • https://www.mathnet.ru/eng/mais348
  • https://www.mathnet.ru/eng/mais/v20/i6/p121
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :67
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024