Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2013, Volume 20, Number 6, Pages 103–110 (Mi mais346)  

Regular Polygonal Complexes of Higher Ranks in $\mathbb{E}^3$

Egon Schulte

Northeastern University, Department of Mathematics, 360 Huntington Avenue, Boston, MA 02115, USA
References:
Abstract: The paper establishes that the rank of a regular polygonal complex in $\mathbb{E}^3$ cannot exceed $4$, and that the only regular polygonal complexes of rank $4$ in $\mathbb{E}^3$ are the eight regular $4$-apeirotopes in $\mathbb{E}^3$.
The article is published in the author's wording.
Keywords: polygonal complex, abstract polytopes, regularity.
Received: 15.10.2013
Document Type: Article
UDC: 514.113.5
Language: English
Citation: Egon Schulte, “Regular Polygonal Complexes of Higher Ranks in $\mathbb{E}^3$”, Model. Anal. Inform. Sist., 20:6 (2013), 103–110
Citation in format AMSBIB
\Bibitem{Sch13}
\by Egon~Schulte
\paper Regular Polygonal Complexes of Higher Ranks in $\mathbb{E}^3$
\jour Model. Anal. Inform. Sist.
\yr 2013
\vol 20
\issue 6
\pages 103--110
\mathnet{http://mi.mathnet.ru/mais346}
Linking options:
  • https://www.mathnet.ru/eng/mais346
  • https://www.mathnet.ru/eng/mais/v20/i6/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :61
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024