Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2013, Volume 20, Number 3, Pages 108–120 (Mi mais315)  

Application of the Fuzzy Classification for Linear Hybrid Prediction Methods

A. S. Taskin, E. M. Mirkes, N. Y. Sirotinina

Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, 660041, Russia
References:
Abstract: The paper discusses the problem of forecasting for samples with real-valued attributes. The goal is to estimate the effect of generated binary attributes on forecasting accuracy for the linear regression and the hybrid methods based on clustering. The initial set of attributes is expanded by binary attributes which are derived from the initial set by fuzzy classification. A comparative testing of the discussed forecasting methods on the initial samples and the resulting ones is performed. The test results on three different databases showed that the use of generated attributes for the classical linear regression resulted in the significant increase of the forecasting accuracy. In case of the linear regression with the clustering based on k-means the increase of forecasting accuracy was also observed. In case of the linear regression with the clustering based on the knn–method we registered a slight decrease, and an unstable result was obtained for the double linear regression.
Keywords: linear regression, fuzzy classification, hybrid prediction methods.
Received: 14.01.2013
Document Type: Article
UDC: 004.67
Language: Russian
Citation: A. S. Taskin, E. M. Mirkes, N. Y. Sirotinina, “Application of the Fuzzy Classification for Linear Hybrid Prediction Methods”, Model. Anal. Inform. Sist., 20:3 (2013), 108–120
Citation in format AMSBIB
\Bibitem{TasMirSir13}
\by A.~S.~Taskin, E.~M.~Mirkes, N.~Y.~Sirotinina
\paper Application of the Fuzzy Classification for Linear Hybrid Prediction Methods
\jour Model. Anal. Inform. Sist.
\yr 2013
\vol 20
\issue 3
\pages 108--120
\mathnet{http://mi.mathnet.ru/mais315}
Linking options:
  • https://www.mathnet.ru/eng/mais315
  • https://www.mathnet.ru/eng/mais/v20/i3/p108
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :227
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024