Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2013, Volume 20, Number 3, Pages 77–85 (Mi mais312)  

On Some Problem for a Simplex and a Cube in ${\mathbb R}^n$

M. V. Nevskii

P. G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
References:
Abstract: Let $S$ be a nondegenerate simplex in ${\mathbb R}^n$. Denote by $\alpha(S)$ the minimal $\sigma>0$ such that the unit cube $Q_n:=[0,1]^n$ is contained in a translate of $\sigma S$. In the case $\alpha(S)\ne 1$ the translate of $\alpha(S)S$ containing $Q_n$ is a homothetic copy of $S$ with the homothety center at some point $x\in{\mathbb R}^n$. We obtain the following computational formula for $x$. Denote by $x^{(j)}$ $(j=1,\ldots, n+1)$ the vertices of $S$. Let ${\mathbf A}$ be the matrix of order $n+1$ with the rows consisting of the coordinates of $x^{(j)};$ the last column of ${\mathbf A}$ consists of 1's. Suppose that ${\mathbf A}^{-1}=(l_{ij}).$ Then the coordinates of $x$ are the numbers
$$x_k= \frac{\sum_{j=1}^{n+1} \left(\sum_{i=1}^n \left|l_{ij}\right|\right)x^{(j)}_k -1} {\sum_{i=1}^n\sum_{j=1}^{n+1} |l_{ij}|- 2} \quad (k=1,\ldots,n).$$
Since $\alpha(S)\ne 1,$ the denominator from the right-hand part of this equality is not equal to zero. Also we give the estimates for norms of projections dealing with the linear interpolation of continuous functions defined on $Q_n$.
Keywords: $n$-dimensional simplex, $n$-dimensional cube, axial diameter, homothety, interpolation, projection.
Received: 14.03.2013
Document Type: Article
UDC: 514.17+517.51
Language: Russian
Citation: M. V. Nevskii, “On Some Problem for a Simplex and a Cube in ${\mathbb R}^n$”, Model. Anal. Inform. Sist., 20:3 (2013), 77–85
Citation in format AMSBIB
\Bibitem{Nev13}
\by M.~V.~Nevskii
\paper On Some Problem for a Simplex and a Cube in ${\mathbb R}^n$
\jour Model. Anal. Inform. Sist.
\yr 2013
\vol 20
\issue 3
\pages 77--85
\mathnet{http://mi.mathnet.ru/mais312}
Linking options:
  • https://www.mathnet.ru/eng/mais312
  • https://www.mathnet.ru/eng/mais/v20/i3/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :110
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024