Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2013, Volume 20, Number 3, Pages 43–57 (Mi mais310)  

Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain

S. D. Glyzin, P. L. Shokin

P. G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
References:
Abstract: We consider a boundary problem of reaction-diffusion type in the domain consisting of two rectangular areas connected by a bridge. The bridge width is a bifurcation parameter of the problem and is changed in such way that the measure of the domain is preserved. The conditions on chaotic oscillations emergence were studied and the dependence of invariant characteristics of the attractor on the bridge width was constructed. The diffusion parameter was chosen such that in the case of widest possible bridge (corresponding to a rectangular domain) the spatially homogeneous cycle of the problem is orbitally asymptotically stable. By decreasing the bridge width the homogeneous cycle looses stability and then the spatially inhomogeneous chaotic attractor emerges. For the obtained attractor we compute Lyapunov exponents and Lyapunov dimension and notice that the dimension grows as the parameter decreases but is bounded. We show that the dimension growth is connected with the growing complexity of stable solutions distribution with respect to the space variable.
Keywords: diffusion chaos, attractor, Lyapunov dimension, Ginzburg–Landau equation, bifurcation.
Received: 25.03.2013
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. D. Glyzin, P. L. Shokin, “Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain”, Model. Anal. Inform. Sist., 20:3 (2013), 43–57
Citation in format AMSBIB
\Bibitem{GlySho13}
\by S.~D.~Glyzin, P.~L.~Shokin
\paper Diffusion Chaos in Reaction -- Diffusion Boundary Problem in the Dumbbell Domain
\jour Model. Anal. Inform. Sist.
\yr 2013
\vol 20
\issue 3
\pages 43--57
\mathnet{http://mi.mathnet.ru/mais310}
Linking options:
  • https://www.mathnet.ru/eng/mais310
  • https://www.mathnet.ru/eng/mais/v20/i3/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :116
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024