|
Modelirovanie i Analiz Informatsionnykh Sistem, 2012, Volume 19, Number 2, Pages 5–18
(Mi mais216)
|
|
|
|
Some new components of the moduli scheme $\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank 2 on $\mathbb P^3$
M. A. Zavodñhikov Yaroslavl State Pedagogical University named after K. D. Ushinsky
Abstract:
In this paper we consider Giseker–Maruyama moduli scheme $\mathrm M:=\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank 2 with Chern classes $c_1=-1$, $c_2=2$, $c_3=0$ on 3-dimensional projective space $\mathbb P ^3$. We will define two sets of sheaves $\mathcal M_1$ and $\mathcal M_2$ in $\mathrm M$ and we will prove that closures of $\mathcal M_1$ and $\mathcal M_2$ in $\mathrm M$ are irreducible components of dimensions 15 and 19, accordingly.
Keywords:
compactification, moduli scheme, coherent torsion free sheave of rank 2, 3-dimensional projective space.
Received: 21.06.2011
Citation:
M. A. Zavodñhikov, “Some new components of the moduli scheme $\mathrm M_{\mathbb P^3}(2;-1,2,0)$ of stable coherent torsion free sheaves of rank 2 on $\mathbb P^3$”, Model. Anal. Inform. Sist., 19:2 (2012), 5–18
Linking options:
https://www.mathnet.ru/eng/mais216 https://www.mathnet.ru/eng/mais/v19/i2/p5
|
|