Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2011, Volume 18, Number 3, Pages 63–74 (Mi mais187)  

About two finite-dimensional approximations of the periodic boundary value problem

N. A. Dem'yankov

P. G. Demidov Yaroslavl State University
References:
Abstract: Two numerical methods for solving the periodic boundary value problem are considered: Galerkin's method and the method of polygonal lines. The original problem is mapped to the sequence of its discretization – systems of equations in finite spaces. Conditions under which the existence of solutions of a periodic boundary value problem entails its solvability of discrete options are given. The question of approximate solutions convergence is studied.
Keywords: numerical methods, boundary value problem, periodic solution, discrete version.
Received: 01.03.2011
Document Type: Article
UDC: 519.6
Language: Russian
Citation: N. A. Dem'yankov, “About two finite-dimensional approximations of the periodic boundary value problem”, Model. Anal. Inform. Sist., 18:3 (2011), 63–74
Citation in format AMSBIB
\Bibitem{Dem11}
\by N.~A.~Dem'yankov
\paper About two finite-dimensional approximations of the periodic boundary value problem
\jour Model. Anal. Inform. Sist.
\yr 2011
\vol 18
\issue 3
\pages 63--74
\mathnet{http://mi.mathnet.ru/mais187}
Linking options:
  • https://www.mathnet.ru/eng/mais187
  • https://www.mathnet.ru/eng/mais/v18/i3/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :94
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024