|
Modelirovanie i Analiz Informatsionnykh Sistem, 2011, Volume 18, Number 3, Pages 5–11
(Mi mais181)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the Lassak conjecture for a convex body
M. V. Nevskii P. G. Demidov Yaroslavl State University
Abstract:
In 1993 M. Lassak formulated (in the equivalent form) the following conjecture.
If we can inscribe a translate of the cube $[0,1]^n$ into a convex body $C\subset\mathbb R^n$, then $\sum_{i=1}^n 1/w_i\geq 1$. Here $w_i$ denotes the width of $C$ in the direction of the $i$th coordinate axis. The paper contains a new proof of this statement for $n=2$. Also we show that if a translate of $[0,1]^n$ can be inscribed into the $n$-dimensional simplex, then for this simplex holds
$\sum_{i=1}^n 1/w_i= 1$.
Keywords:
convex body, width, axial diameter, homothety, simplex, interpolation, projection.
Received: 23.05.2011
Citation:
M. V. Nevskii, “On the Lassak conjecture for a convex body”, Model. Anal. Inform. Sist., 18:3 (2011), 5–11
Linking options:
https://www.mathnet.ru/eng/mais181 https://www.mathnet.ru/eng/mais/v18/i3/p5
|
Statistics & downloads: |
Abstract page: | 279 | Full-text PDF : | 92 | References: | 43 |
|