|
Modelirovanie i Analiz Informatsionnykh Sistem, 2007, Volume 14, Number 4, Pages 53–56
(Mi mais158)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the lower estimate for $k+1$-nondecomposible permutations
G. R. Chelnokov Yaroslavl State University
Abstract:
A permutation $\tau$ is called $k+1$-nondecomposible if the following condition holds: if $\{a_1,\dots,a_in\}$ is a set of natural numbers such that $1\le a_1,<\dots,<a_i\le n$ and $\tau(a_1)<\tau(a_2)<\dots<\tau(a_i)$, then $i\le k$. By $f(n,k)$ denote the number of all not $k+1$-nondecomposible permutations. The following statement was proved in this paper: suppose $K(n)=o(\root3\of{n}/\ln n)$; then $f(n,k)=k^{2n-o(n)}$ for every $k \le K(n)$.
Received: 29.09.2007
Citation:
G. R. Chelnokov, “On the lower estimate for $k+1$-nondecomposible permutations”, Model. Anal. Inform. Sist., 14:4 (2007), 53–56
Linking options:
https://www.mathnet.ru/eng/mais158 https://www.mathnet.ru/eng/mais/v14/i4/p53
|
|