|
Modelirovanie i Analiz Informatsionnykh Sistem, 2007, Volume 14, Number 3, Pages 8–28
(Mi mais143)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Orthogonal projection and minimal linear interpolation on a $n$-dimensional cube
M. V. Nevskij Yaroslavl State University
Abstract:
Let $H$ be the orthogonal projection onto polynomials of $n$ variables of degree $\le 1$ and $\|\cdot\|$ be the norm of an operator from $C([0,1]^n)$ to $C([0,1]^n)$. In this paper we show that $C_1\theta_n\le\|H\|\le C_2\theta_n$, $n\in\mathrm{N}$. Here $\theta_n$ denotes the minimal norm of a projection dealing with the linear interpolation on the cube $[0,1]^n$. The proofs make use of certain properties of the Eulerian numbers and the central $B$-splines and also some previous results of the author.
Received: 03.09.2007
Citation:
M. V. Nevskij, “Orthogonal projection and minimal linear interpolation on a $n$-dimensional cube”, Model. Anal. Inform. Sist., 14:3 (2007), 8–28
Linking options:
https://www.mathnet.ru/eng/mais143 https://www.mathnet.ru/eng/mais/v14/i3/p8
|
Statistics & downloads: |
Abstract page: | 246 | Full-text PDF : | 103 | References: | 52 |
|