Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2007, Volume 14, Number 2, Pages 12–16 (Mi mais128)  

On the number of restrictions determining a periodical sequence

G. R. Chelnokov

Yaroslavl State University
References:
Abstract: We consider sequences $W$ of the period $u$ over an alphabet consisting of $l$ letters. It is required to determine unambiguously the sequence $W$ picking out words which are not subwords of the sequence. For $n\in\mathbb N$ we denote by $U_n$ the set of words $u$ of length $n$, which are not powers (i.e. are not represented in form $u=v^k$, $k>1$).
Let $T(u^\infty)$ be the minimal number of restrictions determining the sequence $u^\infty$.
Denote
$$ m_n=\max_{u\in U_n}T(u^\infty), \quad r_n=\min_{u\in U_n}T(u^\infty). $$
We prove that
1. $m_n\le n(l-1)$.
The estimate is precise for infinite values of $n$. For instance, it takes place for a period which contains all the words of some given length $t$ (i.e. $n=l^t$).
2. $r_n\ge\log_2 n+1$.
3. There exists an increasing sequence $n_i$ so that
$$ r_{n_i}\le\log_{\phi}n_i, \quad\text{where}\quad \phi=\frac{1+\sqrt5}{2}\,. $$
Received: 29.04.2007
Bibliographic databases:
UDC: 512.552.4+519.115.1
Language: Russian
Citation: G. R. Chelnokov, “On the number of restrictions determining a periodical sequence”, Model. Anal. Inform. Sist., 14:2 (2007), 12–16
Citation in format AMSBIB
\Bibitem{Che07}
\by G.~R.~Chelnokov
\paper On the number of restrictions determining a periodical sequence
\jour Model. Anal. Inform. Sist.
\yr 2007
\vol 14
\issue 2
\pages 12--16
\mathnet{http://mi.mathnet.ru/mais128}
\elib{https://elibrary.ru/item.asp?id=13094512}
Linking options:
  • https://www.mathnet.ru/eng/mais128
  • https://www.mathnet.ru/eng/mais/v14/i2/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024