Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2003, Volume 13, Pages 51–55 (Mi ljm98)  

A note on semi-pseudoorders in semigroups

N. Kehayopulu, M. Tsingelis

National and Capodistrian University of Athens, Department of Mathematics
References:
Abstract: An important problem for studying the structure of an ordered semigroup $S$ is to know conditions under which for a given congruence $\rho$ on $S$ the set $S/\rho$ is an ordered semigroup. In [1] we introduced the concept of pseudoorder in ordered semigroups and we proved that each pseudoorder on an ordered semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\rho$ is an ordered semigroup. In [3] we introduced the concept of semi-pseudoorder (also called pseudocongruence) in semigroups and we proved that each semi-pseudoorder on a semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\rho$ is an ordered semigroup. In this note we prove that the converse of the last statement also holds. That is each congruence $\sigma$ on a semigroup $(S,.)$ such that $S/\rho$ is an ordered semigroup induces a semi-pseudoorder on $S$.
Keywords: Pseudoorder, pseudocongruence, semi-pseudoorder.
Submitted by: M. M. Arslanov
Received: 30.09.2003
Bibliographic databases:
Language: English
Citation: N. Kehayopulu, M. Tsingelis, “A note on semi-pseudoorders in semigroups”, Lobachevskii J. Math., 13 (2003), 51–55
Citation in format AMSBIB
\Bibitem{KehTsi03}
\by N.~Kehayopulu, M.~Tsingelis
\paper A~note on semi-pseudoorders in semigroups
\jour Lobachevskii J. Math.
\yr 2003
\vol 13
\pages 51--55
\mathnet{http://mi.mathnet.ru/ljm98}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025559}
\zmath{https://zbmath.org/?q=an:1041.06006}
Linking options:
  • https://www.mathnet.ru/eng/ljm98
  • https://www.mathnet.ru/eng/ljm/v13/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :77
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024