Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2003, Volume 13, Pages 45–50 (Mi ljm97)  

The embedding of an ordered semigroup into an le-semigroup

N. Kehayopulu, M. Tsingelis

National and Capodistrian University of Athens, Department of Mathematics
References:
Abstract: In this paper we prove the following: If $S$ is an ordered semigroup, then the set $\mathcal P(S)$ of all subsets of $S$ with the multiplication "$\circ$" on $\mathcal P(S)$ defined by "$A\circ B\colon=(AB]$ if $A,B\in\mathcal P(S)$, $A\neq\emptyset$, $B\neq\emptyset$ and $A\circ B\colon=\emptyset$ if $A=\emptyset$ or $B=\emptyset$ is an le-semigroup having a zero element and $S$ is embedded in $\mathcal P(S)$.
Submitted by: M. M. Arslanov
Received: 30.09.2003
Bibliographic databases:
Language: English
Citation: N. Kehayopulu, M. Tsingelis, “The embedding of an ordered semigroup into an le-semigroup”, Lobachevskii J. Math., 13 (2003), 45–50
Citation in format AMSBIB
\Bibitem{KehTsi03}
\by N.~Kehayopulu, M.~Tsingelis
\paper The embedding of an ordered semigroup into an le-semigroup
\jour Lobachevskii J. Math.
\yr 2003
\vol 13
\pages 45--50
\mathnet{http://mi.mathnet.ru/ljm97}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025558}
\zmath{https://zbmath.org/?q=an:1044.06007}
Linking options:
  • https://www.mathnet.ru/eng/ljm97
  • https://www.mathnet.ru/eng/ljm/v13/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :92
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024