|
Lobachevskii Journal of Mathematics, 2003, Volume 13, Pages 45–50
(Mi ljm97)
|
|
|
|
The embedding of an ordered semigroup into an le-semigroup
N. Kehayopulu, M. Tsingelis National and Capodistrian University of Athens, Department of Mathematics
Abstract:
In this paper we prove the following: If $S$ is an ordered semigroup, then the set $\mathcal P(S)$ of all subsets of $S$ with the multiplication "$\circ$" on $\mathcal P(S)$ defined by "$A\circ B\colon=(AB]$ if $A,B\in\mathcal P(S)$, $A\neq\emptyset$, $B\neq\emptyset$ and $A\circ B\colon=\emptyset$ if $A=\emptyset$ or $B=\emptyset$ is an le-semigroup having a zero
element and $S$ is embedded in $\mathcal P(S)$.
Citation:
N. Kehayopulu, M. Tsingelis, “The embedding of an ordered semigroup into an le-semigroup”, Lobachevskii J. Math., 13 (2003), 45–50
Linking options:
https://www.mathnet.ru/eng/ljm97 https://www.mathnet.ru/eng/ljm/v13/p45
|
Statistics & downloads: |
Abstract page: | 222 | Full-text PDF : | 92 | References: | 42 |
|