Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2004, Volume 14, Pages 33–38 (Mi ljm89)  

A double-sequence random iteration process for random fixed points of contractive type random operators

G. Mustafa

University of Science and Technology of China
References:
Abstract: In this paper, we introduce the concept of a Mann-type double-sequence random iteration scheme and show that if it is strongly convergent then it converges to a random fixed point of continuous contractive type random operators. The iteration is a random version of double-sequence iteration introduced by Moore (Comput. Math. Appl. 43(2002), 1585–1589).
Keywords: Double-sequence iteration, Mann iteration, Strong convergence, Random Fixed point, Contractive mapping.
Submitted by: A. V. Lapin
Received: 08.07.2003
Bibliographic databases:
Language: English
Citation: G. Mustafa, “A double-sequence random iteration process for random fixed points of contractive type random operators”, Lobachevskii J. Math., 14 (2004), 33–38
Citation in format AMSBIB
\Bibitem{Mus04}
\by G.~Mustafa
\paper A~double-sequence random iteration process for random fixed points of contractive type random operators
\jour Lobachevskii J. Math.
\yr 2004
\vol 14
\pages 33--38
\mathnet{http://mi.mathnet.ru/ljm89}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2034260}
\zmath{https://zbmath.org/?q=an:1054.47048}
Linking options:
  • https://www.mathnet.ru/eng/ljm89
  • https://www.mathnet.ru/eng/ljm/v14/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :102
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024