Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2005, Volume 17, Pages 3–10 (Mi ljm71)  

This article is cited in 1 scientific paper (total in 1 paper)

Concave schlicht functions with bounded opening angle at infinity

F. G. Avkhadieva, K.-J. Wirthsb

a N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
b Technische Universität Braunschweig, Institut für Analysis und Algebra
Full-text PDF (115 kB) Citations (1)
References:
Abstract: Let $D$ denote the open unit disc. In this article we consider functions $f(z)=z+\sum_{n=2}^\infty a_n(f)z^n$ that map $D$ conformally onto a domain whose complement with respect to $\mathbb C$ is convex and that satisfy the normalization $f(1)=\infty$. Furthermore, we impose on these functions the condition that the opening angle of $f(D)$ at infinity is less than or equal to $\pi A$, $A\in(1,2]$. We will denote these families of functions by $CO(A)$. Generalizing the results of [1], [3], and [5], where the case $A=2$ has been considered, we get representation formulas for the functions in $CO(A)$. They enable us to derive the exact domains of variability of $a_2(f)$ and $a_3(f)$, $f\in CO(A)$. It turns out that the boundaries of these domains in both cases are described by the coefficients of the conformal maps of $D$ onto angular domains with opening angle $\pi A$.
Keywords: concave schlicht functions, Taylor coefficients.
Received: 20.01.2005
Bibliographic databases:
Language: English
Citation: F. G. Avkhadiev, K.-J. Wirths, “Concave schlicht functions with bounded opening angle at infinity”, Lobachevskii J. Math., 17 (2005), 3–10
Citation in format AMSBIB
\Bibitem{AvkWir05}
\by F.~G.~Avkhadiev, K.-J.~Wirths
\paper Concave schlicht functions with bounded opening angle at infinity
\jour Lobachevskii J. Math.
\yr 2005
\vol 17
\pages 3--10
\mathnet{http://mi.mathnet.ru/ljm71}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2137295}
\zmath{https://zbmath.org/?q=an:1071.30005}
Linking options:
  • https://www.mathnet.ru/eng/ljm71
  • https://www.mathnet.ru/eng/ljm/v17/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:453
    Full-text PDF :215
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024