Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2005, Volume 18, Pages 131–137 (Mi ljm68)  

On ordered left groups

N. Kehayopulu, M. Tsingelis

National and Capodistrian University of Athens, Department of Mathematics
References:
Abstract: Our purpose is to give some similarities and some differences concerning the left groups between semigroups and ordered semigroups. Unlike in semigroups (without order) if an ordered semigroup is left simple and right cancellative, then it is not isomorphic to a direct product of a zero ordered semigroup and an ordered group, in general. Unlike in semigroups (without order) if an ordered semigroup $S$ is regular and has the property $aS\subseteq (Sa]$ for all $a\in S$, then the $\mathcal N$-classes of $S$ are not left simple and right cancellative, in general. The converse of the above two statements hold both in semigroups and in ordered semigroups. Exactly as in semigroups (without order), an ordered semigroup is a left group if and only if it is regular and right cancellative.
Keywords: left simple, right cancellative, regular ordered semigroup, left group, ideal, filter, left zero element, left zero ordered semigroup.
Bibliographic databases:
Language: English
Citation: N. Kehayopulu, M. Tsingelis, “On ordered left groups”, Lobachevskii J. Math., 18 (2005), 131–137
Citation in format AMSBIB
\Bibitem{KehTsi05}
\by N.~Kehayopulu, M.~Tsingelis
\paper On ordered left groups
\jour Lobachevskii J. Math.
\yr 2005
\vol 18
\pages 131--137
\mathnet{http://mi.mathnet.ru/ljm68}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2169083}
\zmath{https://zbmath.org/?q=an:1080.06022}
Linking options:
  • https://www.mathnet.ru/eng/ljm68
  • https://www.mathnet.ru/eng/ljm/v18/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025