Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2005, Volume 18, Pages 127–130 (Mi ljm67)  

This article is cited in 1 scientific paper (total in 1 paper)

On the abstract theorem of Picard

M. I. Karahanyan

Yerevan State University
Full-text PDF (86 kB) Citations (1)
References:
Abstract: Let $A$ be a complex Banach algebra with unit. It was shown by Williams [1] that elements $\mathbf a,\mathbf b\in A$ commute if and only if $\sup\limits_{\lambda\in\mathbf C}\|\exp(\lambda\mathbf b)\mathbf a\exp(-\lambda\mathbf b)\|<\infty$. This result allows us to obtain an analog of the von Neumann–Fuglede–Putnam theorem in case of normal elements in a complex Banach algebra. In the present paper the results by Williams [1] and Khasbardar et Thakare [2] are refined by using [3, 4, 5]. An abstract version of Picard theorem is obtained in this context.
Submitted by: D. Kh. Mushtari
Received: 31.01.2005
Revised version: 19.07.2005
Bibliographic databases:
Language: English
Citation: M. I. Karahanyan, “On the abstract theorem of Picard”, Lobachevskii J. Math., 18 (2005), 127–130
Citation in format AMSBIB
\Bibitem{Kar05}
\by M.~I.~Karahanyan
\paper On the abstract theorem of Picard
\jour Lobachevskii J. Math.
\yr 2005
\vol 18
\pages 127--130
\mathnet{http://mi.mathnet.ru/ljm67}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2169082}
\zmath{https://zbmath.org/?q=an:1092.46508}
Linking options:
  • https://www.mathnet.ru/eng/ljm67
  • https://www.mathnet.ru/eng/ljm/v18/p127
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :84
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024